Presentation is loading. Please wait.

Presentation is loading. Please wait.

B. Golob, e+e- Flavor Factories 1/18WHEPP, December 2013 Boštjan Golob University of Ljubljana/Jožef Stefan Institute Belle/Belle II Collaboration Physics.

Similar presentations


Presentation on theme: "B. Golob, e+e- Flavor Factories 1/18WHEPP, December 2013 Boštjan Golob University of Ljubljana/Jožef Stefan Institute Belle/Belle II Collaboration Physics."— Presentation transcript:

1 B. Golob, e+e- Flavor Factories 1/18WHEPP, December 2013 Boštjan Golob University of Ljubljana/Jožef Stefan Institute Belle/Belle II Collaboration Physics at current and future e + e - flavor factories University of Ljubljana “Jožef Stefan” Institute IntroductionInclusive Neutrals E miss Summary Introduction E miss measurements Inclusive decays Neutral final states Summary WHEPP13 Puri, Odisha, India

2 B. Golob, e+e- Flavor Factories 2/18WHEPP, December 2013 Introduction e + e - Flavor Factories (what I‘ll talk about and what not...) current (past) future facility location end facility location start datataking datataking KEKB/Belle KEK/ 2010 SuperKEKB/ KEK/ 2016 Tsukuba Belle II Tsukuba PEP-II/BaBar SLAC/ 2008 SuperB Tor Vergata cancelled Stanford BEPCII/BESIII IHEP/ running Super  -Charm several/ ? Beijing Factory Novosibirsk IntroductionInclusive Neutrals E miss Summary

3 B. Golob, e+e- Flavor Factories 3/18WHEPP, December 2013 scope of Intensity Frontier changed over the last decade: -Belle/BaBar: confirmation of CPV mechanism as predicted by CKM mechanism -Super Flavor Factories: search for NP in complementary way to Energy Frontier Introduction General method e + e - facilities discussed here belong to Intensity Frontier of HEP  high statistics/precision measurements to be compared to high accuracy theoretical predictions Energy Frontier  search for NP at highest achieveable energies (Atlas, CMS) IntroductionInclusive Neutrals E miss Summary Intensity frontier Terra Incognita NP reach in terms of mass NP flavor violating couplings(  1 in MFV)

4 B. Golob, e+e- Flavor Factories 4/18WHEPP, December 2013 Methods and processes where e + e - Intensity Frontier can provide important insight into NP complementary to other experiments: E miss : B (B→  ), B (B → X c  ), B (B → h ), B (  →  ), B (D→  ),... Inclusive: B (B → s  ), A CP (B → s  ), B (B → s ll ),... Neutrals: S(B → K S  0  ), S(B →  ’ K S ), B (  →  ), B (B s →  ),...  syst : A CP in charm,.... Introduction Detailed description of physics program: A.G. Akeroyd et al., arXiv: 1002.5012 B. O’Leary et al., arXiv: 1008.1541 IntroductionInclusive Neutrals E miss Summary ~ 300 pages ~ 100 pages A.E. Bondar., Phys. Atomic Nucl., 76, 1072 (2013) K.-T. Chao, Y. Wang, eds., arXiv: 0809.1869 ~ 800 pages ~ 15 pages

5 B. Golob, e+e- Flavor Factories 5/18WHEPP, December 2013 Missing E ( ) B sig →  candidate event B sig B tag B  , h @ B factories fully (partially) reconstruct B tag ; reconstruct h from B sig →h  or B sig →  → h  ; no additional energy in EM calorim.; signal at E ECL ~0; B tag full reconstruction (NeuroBayes) Missing energy IntroductionInclusive Neutrals E miss Summary approx. expected precision @ 50 ab -1 Belle, PRL 110, 131801 (2013), 710 fb-1

6 B. Golob, e+e- Flavor Factories 6/18WHEPP, December 2013 Missing energy IntroductionInclusive Neutrals E miss Summary Belle preliminary, arXiv:1303.3719, 711 fb -1 -- signal -- background B  , h B (B +  K ( * )+ ) can be measured to ±30% with 50 ab -1 ; limits on right-handed currents SM W. Altmannshofer et al., arXiv:0902.0160 approx. expected precision @ 50 ab -1 B < 5.5  10 -5 B < 4.0  10 -5 Related: missing energy method can be exploited also for D (s) leptonic decays!  (D s  ) /B(D s  ) ~ 6% At charm threshold these measurements can be performed with better precission B (D +   ) can be measured to ±2% with 20 fb -1 (and 6 tag modes); Belle, JHEP 09, 139 (2013); 913 fb-1 K.-T. Chao, Y. Wang, eds., arXiv: 0809.1869

7 B. Golob, e+e- Flavor Factories 7/18WHEPP, December 2013 Missing energy IntroductionInclusive Neutrals E miss Summary BaBar, PRL 109, 101802 (2012); 426 fb-1 B  D* 0  B  D 0  M miss 2 B  D* 0  B  D 0  Belle, PRD 82, 072007 (2010); 600 fb-1 B  D ( * )  @ B factories Belle: swapped method compared to B   ; - first look for signal tracks (D ( * )0 and  decay prod.); - from remainder reconstruct B tag BaBar: conventional method - recontruct B tag ; - reconstruct M miss from remainder of event B  D* 0 l feedacross from D* 

8 B. Golob, e+e- Flavor Factories 8/18WHEPP, December 2013 Missing energy IntroductionInclusive Neutrals E miss Summary B  D ( * )  S. Fajfer et al., PRD 85, 094025 (2012) Belle, PRD 82, 072007 (2010); 600 fb-1 Belle, PRL, 99, 191807 (2007); 470 fb-1 Belle, arXiv:0910.4301; 600 fb-1 BaBar, PRL 109, 101802 (2012); 426 fb-1 R(D) R(D*) tan  / m(H ± ) BaBar, PRL 109, 101802 (2012); 426 fb-1 measurement type II 2HDM (H ± ) type II 2HDM excluded @ 99.8% C.L. for any value of tan  /m(H ± ) combined deviation from SM 3.4  average final Belle result on complete data set expected soon A. Bozek, FPCP2013

9 B. Golob, e+e- Flavor Factories 9/18WHEPP, December 2013 Inclusive decays IntroductionInclusive Neutrals E miss Summary Inclusive b →s(+d)  FCNC process; sensitive to NP in loop; experimental challenge: huge background only  reconstructed on signal side continuum  0      b  s  l ± 1.26 GeV < E < 2.20 GeV B sig B tag  XsXs on off continuum  0      b  s  EE EE b →d  subtracted Belle, PRL103, 241801, (2008), 605 fb -1

10 B. Golob, e+e- Flavor Factories 10/18WHEPP, December 2013 Inclusive decays IntroductionInclusive Neutrals E miss Summary Inclusive b →s(+d)   ( B )~1·10 -5 5 10 15 20 25 30 35 40 45 50 L [ab -1 ] expected accuracy on B (B →s  ) at Belle II un-tagged (assuming 10% of data at off) hadronic tag main syst. uncertainties: continuum subtraction,  ’s from sources other than  0,  0.3 0.2 0.1  ( B )·10 -4 syst. dominated measurement! M. Misiak et al., PRL98, 022002 (2007) Belle, 50 ab -1 + existing meas. Belle, 0.6 ab -1  (Br) Br HFAG,2006 HFAG, ICHEP’10 possible range of central values

11 B. Golob, e+e- Flavor Factories 11/18WHEPP, December 2013 Inclusive decays IntroductionInclusive Neutrals E miss Summary B → s  direct CPV Semi-inclusive, sum of many exclusive states:  all flavor specific final states; : average dilution due to flavour mistag,  1  D: difference between flavour mistag for b and b, << 1 A det : detector induced asymmetry b → s  BaBar, PRL101, 171804(2008),350 fb -1 HFAG, Aug 2012 SM: A CP ~ (0.44± 0.24 0.14 )% T. Hurth et al., Nucl.Phys. B704, 56 (2005)

12 B. Golob, e+e- Flavor Factories 12/18WHEPP, December 2013 B → s  direct CPV Expectations A det = - 0.007 ± 0.005 A det : careful study of K/  asymmetries in (p,  lab ) using D decays or inclusive tracks from fragmentation; lots of work on system.,  (A CP )~few 10 -3 LHCb, 5 fb -1 :  (S(  )) ~0.02 Inclusive decays IntroductionInclusive Neutrals E miss Summary LHCb, arXiv:0912.4179 SM A. Soni et al., PRD82, 033009 (2010) 600 GeV Mt’Mt’ 400 GeV super B fact. sensitivity LHCb sensitivity 5 fb -1 example of overlap region (M t‘ >550 GeV from LHC!) extrap. from 337 pb -1 : ±0.05 (syst. @ 337 pb -1 ± 0.07) expected accuracy on A CP at Belle II 0.02 0.01 0 5 10 15 20 25 30 35 40 45 50 L [ab -1 ]  (A CP ) Belle, PRL93, 031803 (2004), 140 fb -1 based on  (A CP )~4·10 -3

13 B. Golob, e+e- Flavor Factories 13/18WHEPP, December 2013 data SM B → s ll semi-inclusive (sum of exclusive states) K ± (K 0 S )+n 1  ± +n 2  0 n 1  3, n 2  1; Inclusive decays IntroductionInclusive Neutrals E miss Summary Belle, preliminary, to be submitted to PRL, 711 fb-1 B-B- Xs-Xs- l + l -  B → X s ee, cos  >0B → X s ee, cos  <0 first (semi)inclusive measurement of A FB N(B → X s ee)~140 N(B → X s  )~160

14 B. Golob, e+e- Flavor Factories 14/18WHEPP, December 2013 Inclusive decays IntroductionInclusive Neutrals E miss Summary K. S.M. Lee et al., PRD75, 034016 (2007) prediction by scaling older results to 1 ab -1 ; toy MC study to be done using the most recent measurement to determine sensitivity of Belle II; exclusive B  K* ll can also be used to constrain Wilson coeff.; theoretical uncertainty larger R=H T (q 1 2,q 2 2 )/  (B → K*  ) r : (unknown) ratio of form factors BaBar, PRL93, 081802 (2004), 80 fb-1 Belle, PRD72, 092005 (2005), 140 fb-1 C9C9 C 10 B → s ll inclusive (z=cos  BaBar, PRD73, 092001 (2006)

15 B. Golob, e+e- Flavor Factories 15/18WHEPP, December 2013 Neutrals IntroductionInclusive Neutrals E miss Summary  →   E=E  * - E beam * M inv =m(  ) Belle, PLB666, 16 (2008), 535 fb -1 M inv [GeV] signal MC data projection   1/ L   1/√ L 4 2 1 0.4 0.2 0.2 1 10 L [ab -1 ] UL 90% B (  →  ) [10 -8 ] simplified (1D) toy MC B (  →  )<4.4 ·10 -8

16 B. Golob, e+e- Flavor Factories 16/18WHEPP, December 2013 Neutrals IntroductionInclusive Neutrals E miss Summary  →  w/o polarization: UL 90% ( B (  →  ))  3x10 -9 @ 50 ab -1 w/ polarization (study by SuperB): factor ~(2-3)x better sensitivity decays  → 3 l, l h 0 background free UL 90% ( B (  →  ))   1/ L to ~5 ab -1 (bkg. from ee→  (  )  (  )  ISR ; such bkg. not important at charm  factory) „level of sensitivity < 10 -9 “  →   →   →  10 -7 10 -8 10 -9 10 -10 10 -11 B (  →  ) 10 -12 10 -11 10 -10 10 -9 10 -8 10 -7 B (  →  ) B (  →e  )>10 -12 Littlest Higgs model with T parity m(T-odd l )=100GeV – 1 TeV,m(T-odd q)=500GeV expected sensitivity on B (  →  ) and B (  →  ) will severly constrain allowed parameter space T. Goto et al., PRD83, 053011 (2011) A. Bondar, 88th plenary ECFA meeting (2010)

17 B. Golob, e+e- Flavor Factories 17/18WHEPP, December 2013 Disclaimer IntroductionInclusive Neutrals E miss Summary only few examples discussed! specifically, not discussed: 1) charm oscilltions and CPV – separate discussion in WG IV on Monday 2) more existing measurements from BES III (e.g. in the field of spectroscopy – separate discussion in WG IV on Tuesday) 3) more oportunities at charm-  factory (but can be discussed together with the item 1) above)

18 B. Golob, e+e- Flavor Factories 18/18WHEPP, December 2013 Summary IntroductionInclusive Neutrals E miss Summary BaBar and Belle still analyzing their full data sets Belle II to start datataking in 2016 measurements complementary to LHC/LHCb charm  factory with some advantages over Super B factory in charm and  physics

19 B. Golob, e+e- Flavor Factories 19/18WHEPP, December 2013 Additional information IntroductionInclusive Neutrals E miss Summary

20 B. Golob, e+e- Flavor Factories 20/18WHEPP, December 2013 B  D ( * )  IntroductionInclusive Neutrals E miss Summary average A. Bozek, FPCP2013 B  D ( * )  Belle: swapped method compared to B   ; BaBar: conventional method BaBar, PRL 109, 101802 (2012); 426 fb-1 Belle, PRD 82, 072007 (2010); 600 fb-1 B (B  D* 0  ) = (2.12 ±0.28 ± 0.29)% B (B  D 0  ) = (0.77 ± 0.22 ± 0.12)% B (B  D* 0  ) = (1.71 ± 0.17 ± 0.13)% B (B  D 0  ) = (0.99 ± 0.19 ± 0.13)% Belle, PRD 82, 072007 (2010); 600 fb-1 Belle, PRL, 99, 191807 (2007); 470 fb-1 Belle, arXiv:0910.4301; 600 fb-1 BaBar, PRL 109, 101802 (2012); 426 fb-1

21 B. Golob, e+e- Flavor Factories 21/18WHEPP, December 2013 B  B   IntroductionInclusive Neutrals E miss Summary B→  Deviations of meas. from SM prediciton expose possible NP contribution u b B+B+ ++ W+W+ (H + ) charged Higgs boson in SUSY Heavy Flavor Averaging Group,http://www.slac.stanford.edu/xorg/hfag/ CKMFitter,http://ckmfitter.in2p3.fr/ discrepancy ~2  ; better accuracy needed The example is only one of slight discrepancies between SM predicitions and exp. results

22 B. Golob, e+e- Flavor Factories 22/18WHEPP, December 2013 B  D ( * )  IntroductionInclusive Neutrals E miss Summary B  D ( * )  Belle, PRD 82, 072007 (2010); 600 fb-1BaBar, PRL 109, 101802 (2012); 426 fb-1 R(D) R(D*) type II 2HDM (H ± ) tan  / m(H ± ) measurement prepared by A. Bozek for KEK FF 2013 Belle, PRL, 99, 191807 (2007); 470 fb-1 Belle, arXiv:0910.4301; 600 fb-1 from this type II 2HDM is excluded at rather high C.L.

23 B. Golob, e+e- Flavor Factories 23/18WHEPP, December 2013 B  D ( * )  IntroductionInclusive Neutrals E miss Summary  polarization using  h decays M W 2 =(p B -p D ) 2 M M 2 =(p B -p D -p h ) 2 based on Belle data set one expects ~5000 reconstructed events in  and 

24 B. Golob, e+e- Flavor Factories 24/18WHEPP, December 2013 Ds  Ds   IntroductionInclusive Neutrals E miss Summary M miss 2 (D tag K X frag  ) inclusive D s reconstruction D s     D s    e extra ECL energy as separation variable due to multiple ‘s in final state Belle, JHEP 09, 139 (2013); 913 fb-1 X frag =nothing X frag =  +  -  0

25 B. Golob, e+e- Flavor Factories 25/18WHEPP, December 2013 Ds  Ds   IntroductionInclusive Neutrals E miss Summary Belle, JHEP 09, 139 (2013); 913 fb-1 M miss 2 (D tag K X frag  ) D s *  D s , D s  ,  B (D s   ) can be measured to ±5% with 20 ab -1 ; B = (0.531 ± 0.028 ± 0.020)%

26 B. Golob, e+e- Flavor Factories 26/18WHEPP, December 2013 Ds  Ds   IntroductionInclusive Neutrals E miss Summary D   at charm threshold method similar to B factories for B   ; B (D +   ) can be measured to ±2% with 20 fb -1 (and 6 tag modes); current: B (D +   ) = (3.74 ± 0.21 ± 0.06)  10 -4 single tag D + candidates K.-T. Chao, Y. Wang, eds., arXiv: 0809.1869 BES III, arXiv: 1209.0085, 3 fb-1

27 B. Golob, e+e- Flavor Factories 27/18WHEPP, December 2013 SuperKEKB  x ~100  m,  y ~2  m  x ~10  m,  y ~60nm e-e- e+e+ Nano beams design (P. Raimondi) small  y * large  y   (  y */  y )  small  y hourglass effect  small  x * increase I  *: beta-function (trajectories envelope) at IP  y : beam-beam parameter L [s -1 cm -2 ] ∫L dt [ab -1 ] design L =8·10 35 s -1 cm -2 current B factories ∫L dt=10 ab -1 (2018-2019) ∫L dt=50 ab -1 (2022-2023) Accelerator IntroductionInclusive Neutrals E miss Summary magnet installation for SuperKEKB; Being built on schedule

28 B. Golob, e+e- Flavor Factories 28/18WHEPP, December 2013 Accelerator IntroductionInclusive Neutrals E miss Summary Damping ring Low emittance gun Positron source New beam pipe & bellows Belle II New IR TiN-coated beam pipe with antechambers Redesign the lattices of HER & LER to squeeze the emittance Add / modify RF systems for higher beam current New positron target / capture section New superconducting /permanent final focusing quads near the IP Low emittance electrons to inject Low emittance positrons to inject Replace short dipoles with longer ones (LER) e+e+ e-e- SuperKEKB

29 B. Golob, e+e- Flavor Factories 29/18WHEPP, December 2013 Introduction Inclusive Neutrals E miss Summary electrons (7GeV) positrons (4GeV) KL and muon detector: Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers) Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd) Central Drift Chamber He(50%):C 2 H 6 (50%), small cells, long lever arm, fast electronics EM Calorimeter: CsI(Tl), waveform sampling (barrel) Pure CsI + waveform sampling (end-caps) Vertex Detector 2 layers DEPFET + 4 layers DSSD Beryllium beam pipe 2cm diameter

30 B. Golob, e+e- Flavor Factories 30/18WHEPP, December 2013 Neutrals IntroductionInclusive Neutrals E miss Summary B → K* (→K S  0 )  t-dependent CPV SM: S CP K*   -(2m s /m b )sin2  1  -0.04 Left-Right Symmetric Models: S CP K*   0.67 cos2  1  0.5 S CP Ks  0  = -0.15 ±0.20 A CP Ks  0  = -0.07 ±0.12 HFAG, Summer’12 (~SM prediction) D. Atwood et al., PRL79, 185 (1997) B. Grinstein et al., PRD71, 011504 (2005)  (S CP Ks  0  )= 0.09 @ 5 ab -1 0.03 @ 50 ab -1 0.03 @ 50 ab -1 t-dependent decays rate of B → f CP ; S and A: CP violating parameters 5 ab -1 50 ab -1 HFAG Summer 2012

31 B. Golob, e+e- Flavor Factories 31/18WHEPP, December 2013 Requirements for SBF Requirements O (10 2 ) higher luminosity complementarity to other intensity frontiers experiments (LHCb, BES III,....); accurate theoretical predictions to compare to Adopted from G. Isidori et al., Ann.Rev.Nucl.Part.Sci. 60, 355 (2010) Super B factory LHCb K experiments B (B →X s  ) 6% Super-B B (B →X d  ) 20% Super-B S(B →  ) 0.15 Super-B B (  →  ) 3 ·10 -9 Super-B (90% U.L.) B (B + →D  ) 3% Super-B B (B s →  ) 0.25 ·10 -6 Super-B (5 ab -1 ) sin 2  W @  (4S) 3 ·10 -4 Super-B IntroductionInclusive Neutrals E miss Summary theory uncertainty matches the expected exp. precision theory uncertainty will match the expected exp. precision with expected progress in LQCD

32 B. Golob, e+e- Flavor Factories 32/18WHEPP, December 2013 Introduction Accelerator B-Factory”, “B-Factory”, KEKB @ KEK KEKB: e - (HER): 8.0 GeV e + (LER): 3.5 GeV crossing angle: 22 mrad E CMS =M(  (4S))c 2 dN f /dt =  (e + e - →f) L Tokyo (40 mins by Tsukuba Exps)  L dt = 1020 fb -1 2010 1999 accelerator institute e-e- e+e+ (1.02 ab -1 ) IntroductionPID AcceleratorCalorimeter VertexGeneral

33 B. Golob, e+e- Flavor Factories 33/18WHEPP, December 2013 Accelerator  (e + e - → c c)  1.3 nb (~1.3x10 9 X c Y c pairs Belle) ”continuum” production, qq, ll,  “on resonance” production e + e - →  (4S) → B d 0 B d 0, B + B -  (e + e - → BB)  1.1 nb (~10 9 BB pairs Belle) Belle  L dt  1020 fb -1 BaBar  L dt  550 fb-1 Accelerator, BF, KEKB @ KEK / PEPII @ SLAC  (e + e - →hadrons) [nb] b b u,d b b  (4S) B d 0, B + B d 0, B - energ. threshold for BB production ** f f e-e- e+e+ (hadrons) running at Y(nS), e.g. Y(5S) (B s B s ) IntroductionInclusive sin2  1 Neutrals E miss General requirements

34 B. Golob, e+e- Flavor Factories 34/18WHEPP, December 2013 Accelerator Asymmetry IntroductionPID AcceleratorCalorimeter VertexGeneral larger asymm.: larger boost, better relative decay time resolution, better continuum bkg. rejection smaller asymm.: more isotropic events, better hermeticity   z = 180  m,  =0.425    t =1.4 ps t-dependent: B  J/  K S B   K S D*  D 0 , D 0  K + K - t-independent: B  sBelle Design Group, KEK Report 2008-7 not including improved resol. of upgraded PXD+SVD! if  (  z) improved by 10%-15%   (t-dependent) improved by 5%-10%  effective  L dt:  10%-20% B mesons: all p LAB from boost,  (  t) =  (  z) /  ; D mesons: effect of boost much smaller,  (t) =  (L) m / p (effect of boost hidden in p)

35 B. Golob, e+e- Flavor Factories 35/18WHEPP, December 2013 Example of complementarity : MSSM searches Belle II constraints shown @ 5 ab -1 B (B s  +  - )~ (0.8± 1.8 1.3 )·10 -9 ( B (B s  +  - )~ <4.5·10 -9 @95% C.L.) LHCb constraint: Br(B s  +  - )~ (4-5)x10 -9 (@ 3 fb -1 ) (not yet updated for the recent LHCb measurement) Neutrals K S  0  IntroductionInclusive sin2  1 Neutrals E miss General requirements A.G. Akeroyd et al., arXiv:1002.5012 contours of S(K S  0  ) S(K S  0  ) ~ -0.4±0.1 S(K S  0  ) ~ 0.1±0.1 Belle II/LHCb combination: stringent limits on Re(  d RL ) 23, tan  tan  Re(  d RL ) 23 contours of B (B s  +  - ) LHCb, 1 fb -1, Moriond EW 2012

36 B. Golob, e+e- Flavor Factories 36/18WHEPP, December 2013 b  d  IntroductionInclusive sin2  1 Neutrals E miss General requirements B → d  Br Expectations within SM: Br(B → d  ) / Br(B → s  ) =(3.8 ±0.5)  10 -2 (ratio can be used to determine |V td /V ts |) Br(B → s  ) = 3.4  10 -4 Br(B → d  ) should be measured with an accuracy of ~2  10 -6 exclusive modes,      ;  (Br(    )) = (±1.7±1.0)  10 -7  (Br(    )) = (±2.8±1.0)  10 -7 sum of exclusive modes:  (Br(d  )) = (±3±1)  10 -7 low X d mass region  (Br(d  )) = (±20±22)  10 -7 high X d mass region T. Hurth et al., Nucl.Phys. B704, 56 (2005) Belle, PRL 101, 111801 (2008), 0.6 ab-1 BaBar, PRD82, 051101 (2010), 0.4ab-1 modest improvement necessary significant improvement necessary

37 B. Golob, e+e- Flavor Factories 37/18WHEPP, December 2013 b  d  IntroductionInclusive sin2  1 Neutrals E miss General requirements B → d  direct CPV Expectations within SM: A CP b → d   - A CP b → s  can probably only be measured as a sum of exclusive states ( ,...) exclusive, SM: A CP (    =(-10.4 ± 3.9)% + further uncertaintes due to unknown power corrections inclusive, SM: A CP b → d  = (-10.2 ± 4.6)% advantage of inclusive modes is in the relation  (d  ) = -  (s  ) where  is defined as A CP =  /  =  (B → q  ) –  (B → q  )] /  (B → q  ) +  (B → q  )] M. Beneke et al., Eur.Phys.J. C41, 173{188 (2005) T. Hurth et al., Nucl.Phys. B704, 56 (2005)

38 B. Golob, e+e- Flavor Factories 38/18WHEPP, December 2013 DCPV K p IntroductionInclusive Neutrals E miss General requirements DCPV puzzle: tree+penguin processes,  B +(0) →K +    A K  = A(K +  - )- A(K +  0 )= -0.147±0.028  model independent sum rule: A(K 0  + )=0.009 ±0.025 A(K +  0 )=0.050 ±0.025 A(K +  - )=-0.098 ±0.012 A(K 0  0 )=-0.01 ±0.10 M. Gronau, PLB627, 82 (2005); D. Atwood, A. Soni, PRD58, 036005 (1998) HFAG, Summer’11 Belle II 50 ab -1 A(K 0  0 ) A(K 0  + ) sum rule  A(K +  0 ) measured (HFAG) expected (sum rule) Belle, Nature 452, 332 (2008), 480 fb -1 misidentif. bkg. B 0 →K +  

39 B. Golob, e+e- Flavor Factories 39/18WHEPP, December 2013 sin2  1  1 from B 0 → cc K 0 Improved tracking, more data (50% more statistics than last result with 480 fb -1 ); cc = J/ ,  (2S),  c1 for K L only cluster (direction) in ECL, KLM; missing info from kinematic constraints; detector effects: wrong tagging, finite  t resolution, determined using control data samples Belle, 710 fb -1, arXiv:1201.4643 cc K S cc K L IntroductionInclusive sin2  1 Neutrals E miss General requirements

40 B. Golob, e+e- Flavor Factories 40/18WHEPP, December 2013 “Irreducible” systematic uncertainty decreased by 50% compared to previous estimate  (S) ~ 0.008 5 10 15 20 25 30 35 40 45 50 L [ab -1 ]  (S) 0.02 0.015 0.01 0.005 expected accuracy on sin2  1 at Belle II sin2  1 S= 0.667 ± 0.023 ± 0.012 A= 0.006 ± 0.016 ± 0.012 Belle, 710 fb -1, arXiv:1201.4643 main systematic uncertainties: vertexing,  t resolution, tag side interf. “bread&butter” of BF; not the main motivation of SBF, but still extremely important IntroductionInclusive sin2  1 Neutrals E miss General requirements

41 B. Golob, e+e- Flavor Factories 41/18WHEPP, December 2013 B  B   B   main syst. is reducible: bkg. ECL shape,  B tag ); N sig =154 ± 36 N sig =69 ± 21 hadronic tag semilept. tag B (B + →   )=(1.80 ± 0.56 ± 0.26) ∙10 -4 Belle,PRD82, 071101 (2010), 605 fb -1 BaBar, arXiv: 1008.0104, 350 fb -1 B (B + →   )=(1.65 ± 0.38 ± 0.36) ∙10 -4 5 10 15 20 25 30 35 40 45 50 L [ab -1 ] 0.4 0.3 0.2 0.1  ( B )·10 -4 expected accuracy on B (B + →   ) at Belle II, semileptonic tag including hadronic tag,  ( B )~0.06·10 -4 IntroductionInclusive sin2  1 Neutrals E miss General requirements

42 B. Golob, e+e- Flavor Factories 42/18WHEPP, December 2013 B  B   IntroductionInclusive sin2  1 Neutrals E miss General requirements B +   semil. tagging B tag +  D ( * )0 l control samples: B tag 0  D ( * )+ l  (B bkg., including peaking bkg.), off-resonance data (bkg. from continuum), E ECL sideband (data/MC comparison), select. variables sidebands ( shape of mainly non-B bkg.), double tagged B tag +  D ( * )0 l and B sig -  D ( * )0 l  (signal shape) main syst.: tagging  (estimated by B (B +  D* 0 l ) from double tagged events), signal yield (peaking bkg. with K L ’s, variation of B ’s for K S ) @ 50 ab -1 Belle, PRD 82, 071101(R) (2010) 605 fb -1

43 B. Golob, e+e- Flavor Factories 43/18WHEPP, December 2013 B  h IntroductionInclusive sin2  1 Neutrals E miss General requirements B  h B sig B tag  (h )(X l ) semil. tag  (h )(X) hadr. tag fully (partially) reconstruct B tag ; reconstruct h from B sig →h  ; no additional energy in EM calorim.; signal at E ECL ~0; new B tag full reconstruction: NeuroBayes,  had full x1.8; TOP detector  PID K,  x1.1-1.15/track; ECL, increased background:  had full x0.8, purity x0.9; together: N sig : x1.8; N bkg : x0.9 semilep. tag:  semil  5  had full N bkg semil  10 N bkg had -- exp. signal (20xBr) exp. bkg. (scaled to sideband) Belle, PRL99, 221802 (2007), 490 fb -1 N bkg exp =4.2 ±1.4 (stat. of MC and sidebands, ECL distr. checked with wrong-sign) N sig exp =0.34 ( B (B 0  K* 0 ) = 1.3x10 -5 ) G. Buchalla et al., PRD63, 014015 (2001) hadr. tag signal region B 0  K* 0

44 B. Golob, e+e- Flavor Factories 44/18WHEPP, December 2013 B  h IntroductionInclusive sin2  1 Neutrals E miss General requirements B  h  L dt=50 ab -1 semil.+hadr. tag: N sig ~240; N bkg ~4600 B (B 0  K* 0 ) can be measured to ±30%; similar precision for B (B 0  K S ); B +  K + includes irreducible background from B +     K +  ; B (B +  K )/ B (B +   ) B (   K +  ) ~ 20%; if B (B +   ) known to ±8%  negligible contribution to uncertainty; B +  K +  suffers from larger bkg. than B 0  K* 0 need to use NeuroBayes with larger purity and smaller eff. (P x2,  had full x1.6) N sig ~500; N bkg ~17.5x10 3 B (B +  K + ) can be measured to ±30%; W. Altmannshofer et al., arXiv:0902.0160 N bkg exp =20.0 ±4.0 N sig exp =0.52 ( B (B +  K + ) = 3.6x10 -6 G. Buchalla et al., PRD63, 014015 (2001)

45 B. Golob, e+e- Flavor Factories 45/18WHEPP, December 2013 S in b → s penguins IntroductionInclusive sin2  1 Neutrals E miss General requirements Belle, arXiv:0811.3665, 657M BBbar B 0 →K s  b →s penguin dominated processes: SS SuperBelle, 50 ab -1 range allowed with current HFAG central values determine possible new phase with  th (current) t-dependent Dalitz analyses measure  1 eff associated with individual amplitudes (  K s, f 0 K s,...)  vtx reconstr. (non-scaling) improved with better tracking  sig. model (non-scaling) misreconstructed events; some syst. errors cancel in  S = S(sqq)-S(J/  K s )

46 B. Golob, e+e- Flavor Factories 46/18WHEPP, December 2013 Neutrals CPT IntroductionInclusive sin2  1 Neutrals E miss General requirements Search for CPT violation allowing for CPT violation the decay time evolution of B 0 B 0 pair is a bit more complex: z ≠0: CPTV (  (z),  (z)); for z=0,  d =0 and f rec =f CP this expression reduces to the one used for sin2  1 measurement;

47 B. Golob, e+e- Flavor Factories 47/18WHEPP, December 2013 Search for CPT violation Reconstructed decays: B 0 → J/  K 0, D ( * )-  + (  + ), D* - l + f CP ~f flav f flav Neutrals CPT IntroductionInclusive sin2  1 Neutrals E miss General requirements f tag =B 0 f rec =B 0 f tag =B 0 f rec =B 0 most of difference due to CPV, not CPTV Fit to B 0 /B 0 asymm. Expect. for  (z)=0.28 f CP f flav Fit to OS asymm. Expect. for  (z)=-0.03 Belle, PRD85, 071105 (2012), 535 M BB

48 B. Golob, e+e- Flavor Factories 48/18WHEPP, December 2013 Neutrals CPT IntroductionInclusive sin2  1 Neutrals E miss General requirements Search for CPT violation  (z)=(1.9 ±3.7 ± 3.3) ·10 -2  (z)=(-5.7 ±3.3 ± 3.3) ·10 -3  d /  d =(-1.7 ±1.8 ± 1.1) ·10 -2 sensitivity ~2x better than previous most sensitive search BaBar, PRD70, 012007 (2004) PRL92, 181801 (2004) PRL96, 251802 (2006) main syst. uncertainites:  (z): tag side interference (reducible)  (z),  d /  d : vertex reconstruction (partially reducible) relatively easy with high statistics to reduce the errors by (2-4)x:  (  (z))~2 ·10 -2  ((  (z))~3 ·10 -3  (  d /  d )~1·10 -2 to reduce further significant work on systematic uncertainties needed

49 B. Golob, e+e- Flavor Factories 49/18WHEPP, December 2013 Neutrals T violation IntroductionInclusive sin2  1 Neutrals E miss General requirements Projects B − Projects B 0 Projects B + Projects B 0 BaBar, Phys. Rev. Lett. 109, 211801 (2012) Measurement of T violation method acc. to A. Bevan, MITP workshop on T violation, April 2013 + Superscripts: + = normal ordering − = T reversed ordering

50 B. Golob, e+e- Flavor Factories 50/18WHEPP, December 2013 Neutrals T violation IntroductionInclusive sin2  1 Neutrals E miss General requirements Fit result T-conserving case BaBar, Phys. Rev. Lett. 109, 211801 (2012) Measurement of T violation in SM for ccK 0 : D C T ± = 0 exepectation for Belle II (naive extrapol.): s ( D S ± )~0.022 comparison to the CPV (sin2 f 1 ) represents search for CPTV (probably stat. uncertainties for sin2 f 1 and D S ± correlated  CPTV tested to ~2  10 -2 ) to be compared to s (|z|) ~ 2  10 -2


Download ppt "B. Golob, e+e- Flavor Factories 1/18WHEPP, December 2013 Boštjan Golob University of Ljubljana/Jožef Stefan Institute Belle/Belle II Collaboration Physics."

Similar presentations


Ads by Google