Presentation is loading. Please wait.

Presentation is loading. Please wait.

Update Comprehensive (extensive) Nucleon decay mode list Maury Goodman Lisa Lin 13 January 2016PDK modes; Goodman/Lin1.

Similar presentations


Presentation on theme: "Update Comprehensive (extensive) Nucleon decay mode list Maury Goodman Lisa Lin 13 January 2016PDK modes; Goodman/Lin1."— Presentation transcript:

1 Update Comprehensive (extensive) Nucleon decay mode list Maury Goodman Lisa Lin 13 January 2016PDK modes; Goodman/Lin1

2 Mission The goal is to make a (hopefully) comprehensive look at nucleon decay modes to identify those modes (vis-à-vis water counters) for which a high resolution liquid Argon detector has a competitive advantage. We use simplifying assumptions on , backgrounds, etc. Those modes would then be candidates for full simulations. 13 January 2016PDK modes; Goodman/Lin2

3 Assumptions  We know:  Ar has 2.7 10 32 p and 3.3 10 32 n per kT  Some Super-K efficiencies and backgrounds  We estimate  Schedule and duty-cycle for DUNE  Efficiencies & backgrounds for DUNE [  =  recon  nuc ]  We’ve started with high efficiencies and low backgrounds  “nuclear efficiencies” from BUENO paper  Future duty cycles Super-K 13 January 2016PDK modes; Goodman/Lin3

4 Exposure  Dune starts with 10 kT in 2022, 40 in 2026  Duty Cycle SK = 0.8; D = 0.9  T DUNE = (y-2022)*10 kT* D  for y>2022]  (y-2026)*30 kT* D  for y>2026]  T SK = 149.2 + (y-1995.79)*22.5* SK  Intersect in 2052 13 January 2016PDK modes; Goodman/Lin4

5 Modes  We’ve identified 91 exclusive modes that conserve spin. (Counting neutral kaon modes is a bit of an art.)  There are another 15 modes of n-nbar and dinucleon decays  In the 2014 RPP, Super-K only had the best limit for 14 modes (!) but they probably have the best real limits for most of the 91. 13 January 2016PDK modes; Goodman/Lin5

6 p decay modes PLimitCollab.EX(D)e nuc e rec e tot EX2(SK)OBPBe rec (EX)e tot (EX) BG=0 T=40 kt*yr BG=0, T=400 kt*yr 504.644 kt*yr 684.64 4kt*yr e+p0e+p0 >16.7SK>2.1>21.45483.945.3>25.4>34.400.310054 m+r0m+r0 >0.16SK>1.3>13.129.29527.7>11.6>11.210.428223.9 e+r0e+r0 >0.71SK>1.3>13.129.29527.7>13.6>13.200.359828.6 e-p+p+e-p+p+ >0.03FR>1.1>10.619.49518.4 10019.4 m-p+p+m-p+p+ >0.017FR>1.1>10.619.49518.4 10019.4 e+p-p+e+p-p+ >0.082IMB>1.1>10.719.495.918.6 10019.4 m+p-p+m+p-p+ >0.133IMB>1.1>10.619.49518.4 10019.4 e+e+e-e+e+e- >0.793IMB>4.5>44.810095 100 m+m+m-m+m+m- >0.675IMB>4.5>44.810095 100 e+m+m-e+m+m- >0.359IMB>4.5>44.810095 100 e-m+m+e-m+m+ >0.006HPW>4.5>44.810095 100 m+e+e-m+e+e- >0.529IMB>4.5>44.810095 100 e-p+K+e-p+K+ >0.075IMB>2>19.7449541.8 10044 m+p-K+m+p-K+ >2>19.7449541.8 10044 m-p+K+m-p+K+ >0.245IMB>2>20.24497.642.9 10044 e+p-K+e+p-K+ >2>19.7449541.8 10044 m+p+K-m+p+K- >2>19.7449541.8 10044 e+p+K-e+p+K- >2>19.7449541.8 10044 np + p + p - >0.2>1.94.3954.1 1004.3 e+K0e+K0 >1SK 64.7100 e+Kse+Ks ???N/A>2.2>22.210047 100 e+KLe+KL ???N/A>0.2>2.21470.47 1001 m+K0m+K0 >1.6SK 1313.2100 m+Ksm+Ks ???N/A>2.2>22.010046.7 100 m+KLm+KL ???N/A>0.2>2.2146.70.47 1001 (e + g) >0.67IMB>4.6>46.210098 0100 e + gg >0.1FR>4.5>44.810095 100 e+h0e+h0 >4.2SK>3.4>3475.89572>37.1>35.600.4410075.8 e+w0e+w0 >0.32SK>2.4>2453.69550.9>18.9>25.610.5310053.6 m+gm+g >0.478IMB>4.6>46.210098 100 m+p0m+p0 >7.78SK>2.1>21.1548344.8>25.4>34.400.310054 m+h0m+h0 >1.3SK>3.4>3475.89572>26.5>35.920.4910075.8 m+w0m+w0 >0.78SK>2.4>2453.69550.9>17.6>23.800.489450.4 nK + >6.6SK>4.7>47.19799.896.8>20.5>24.101.310097 nr + >0.162IMB>1.3>13.129.29527.7 10029.2 (nK *+ ) >0.051IMB>2.0>19.7449541.8 10054 np + >0.016SOU>2.0>19.85477.641.9 10054 e + K *0 >0.084IMB>2.4>24.2549551.3 10054 e+p0p0e+p0p0 >0.147IMB>0.9>8.719.49518.4 10019.4 m+p0p0m+p0p0 >0.101IMB>0.9>8.719.49518.4 10019.4 e + nn >0.017IMB>4.5>44.810095 100 m + nn >0.021FR>4.5>44.810095 100 13 January 2016PDK modes; Goodman/Lin6

7 Bound n decay modes N 100 e+r-e+r- >0.217IMB>1.6>16.029.29527.7 9728.3 e-r+e-r+ >0.062IMB>1.6>16.029.29527.7 10029.2 m+p-m+p- >1SK>3.0>29.6549551.3>20.9>20.110.4310054 m-p+m-p+ >0.049IMB>2.6>25.8548344.8 10054 m+r-m+r- >0.228IMB>1.6>16.029.29527.7 8324.2 m-r+m-r+ >0.007IMB>1.6>16.029.29527.7 10029.2 ng >0.028IMB>5.5>54.810095 100 ngg >0.219IMB>5.5>54.810095 100 np 0 >0.112IMB>2.6>26.05483.545.1 10054 nK 0 >0.086KM 100 nK s >0.26SK>5.5>54.810095 3430100 nK L ???N/A>0.5>5.51950.95 1001 nh 0 >0.158IMB>4.2>41.575.89572 10075.8 nr 0 >0.019IMB>1.6>16.029.29527.7 10029.2 nw 0 >0.108IMB>2.9>29.453.69550.9 10053.6 nK *0 >0.078IMB>3.0>29.6549551.3 10054 e+e-ne+e-n >0.257IMB>5.5>54.810095 100 m+e-nm+e-n >0.083IMB>5.5>54.810095 100 m+m-nm+m-n >0.079IMB>5.5>54.810095 100 e+p-e+p- >2SK>2.6>25.65482.244.4>20.1>27.300.2710054 nmmp >1.9>19.2359533.3 10035 neep >1.9>19.2359533.3 10035 nmep >1.9>19.2359533.3 10035 e-K+e-K+ >0.032FR>5.5>55.410096 100 m-K+m-K+ >0.057FR>5.6>55.910097 100 e+K-e+K- >0.017IMB>5.6>55.910097 100 m+K-m+K- >0.026IMB>5.6>55.910097 100 mppp >0.2>2.44.3954.1 1004.3 eppp >0.2>2.44.3954.1 1004.3 epK s >2.4>24.1449541.8 10044 n4p >0.07>0.71.5951.4 1001.5 emmp >1.9>19.2359533.3 10035 eeep >1.9>19.2359533.3 10035 mmmp >1.9>19.2359533.3 10035 eemp >1.9>19.2359533.3 10035 nempp >1.6>16.012.39511.6 10012.3 e+p-p0e+p-p0 >0.052IMB>1.1>11.619.49518.4 10019.4 m+p-p0m+p-p0 >0.074IMB>1.1>11.619.49518.4 10019.4 e+K0p-e+K0p- >0.018FR 100 e+Ksp-e+Ksp- >2.4>24.1449541.8 10044 e+KLp-e+KLp- >0.02>0.20.44950.4 1000.44 e-p+e-p+ >0.065IMB>3.0>29.6549551.3 10054 e-p+p0e-p+p0 >0.029FR>1.1>10.619.49518.4 10019.4 m-p+p0m-p+p0 >0.034FR>1.1>10.619.49518.4 10019.4 3n >0.0000004 9KM>5.5>54.810095 100 5n ???N/A>5.5>54.810095 100 13 January 2016PDK modes; Goodman/Lin7

8 N-nbar oscillation and dinucleon decay NAO n̅+p p+p0p+p0 SK>3.1>30.856.39553.4 10056.3 p + 2p 0 SK>1.3>1323.89522.6 10023.8 p + 3p 0 SK>0.5>4.78.5958.1 1008.5 2p + p - p 0 SK>0.5>4.78.5958.1 1008.5 2p + p - 2p 0 SK>0.3>2.54.6954.4 1004.6 2p + p - 2w SK>0.1>1.32.4952.3 1002.4 3p + 2p - p 0 SK>0.04>0.40.73950.69 1000.73 n̅+n p+p-p+p- SK>3.1>30.856.39553.4 10056.3 2p 0 SK>3.1>30.856.39553.4 10056.3 p+p-p0p+p-p0 SK>1.3>1323.89522.6 10023.8 p + p - 2p 0 SK>0.5>4.78.5958.1 1008.5 p + p - 3p 0 SK>0.3>2.54.6954.4 1004.6 2p + 2p - SK>0.5>4.78.5958.1 1008.5 2p + 2p - p 0 SK>0.3>2.54.6954.4 1004.6 p+p-wp+p-w SK>1.1>11.320.69519.6 10020.6 2p + 2p - 2p 0 SK>0.04>0.40.73950.69 1000.73 p→e + X>0.79SK>4.5>44.810095 100 p→m + X>0.41SK>4.5>44.810095 100 n→ng>0.55SK>5.5>54.810095 100 np→e + n>0.26SK>0.4>4.510095 100 np→m + n>0.2SK>0.4>4.510095 100 np→t + n>0.03SK>0.4>4.510095 100 pp→p + p + pn→p + p 0 nn→p + p - nn→p 0 p 0 pp→e + e + pp→e + m + pp→m + m + 13 January 2016PDK modes; Goodman/Lin8

9 Nuclear efficiency  The nuclear efficiency has a special role in nucleon decay limits/searches  If a nucleon decays into a  or something that decays into  while inside the nucleus  the  might interact or get absorbed.  That probability depends on nucleus and the pion momentum distribution (100-500 MeV). Lower energy pions have a very high resonance cross section. 13 January 2016PDK modes; Goodman/Lin9

10 Nuclear efficiency  The uncertainties are large.  They are estimated from pion-nucleus scattering cross section data.  That can’t be right. The pion wave functions will differ (and presumably the cross sections) between pions which are created in the nucleus and those that come from .  The uncertainties are correlated between different experiments in the same nucleus. 13 January 2016PDK modes; Goodman/Lin10

11  nuc  We took  nuc (Ar) from the Bueno et al. paper (hep-ph/0701101) which looked at 14 modes.  For the other modes, we estimated momentum dependence for  nuc (Ar) using the multiplicity.  I expect  nuc (Ar) <  nuc (O) 13 January 2016PDK modes; Goodman/Lin11

12 Example  Sample Mode n  e +  - Final state has one e +, two , one  -. Best limit is from IMB,  /B > 0.22 10 33 yr. We estimate  recon  nuc = 0.95  0.29. Dune Sensitivity estimate is:  /B > 1.6 (16) 10 33 yr in 40 (400) kt-y 13 January 2016PDK modes; Goodman/Lin12

13 Another Example P  K*(890) Super-K does not have a limit. But K* decays to K +  0 half the time, and often the  0 doesn’t get out of the nucleus and isn’t seen. Thus the signature is identical to K +. So we can infer a limit from Super-K better than the PDG limit. 13 January 2016PDK modes; Goodman/Lin13

14 DUNE Note in docdb  Note and spreadsheet have been uploaded to docdb-679 http://docs.dunescience.org:8080/cgi-bin/ShowDocument?docid=679 http://docs.dunescience.org:440/cgi-bin/ShowDocument?docid=679  Updated versions will be put there. 13 January 2016PDK modes; Goodman/Lin14

15 Next steps o Find any Super-K limits from theses, Conf.proc., papers since RPP2014 o Estimate current and future Super-K limits for (91-14) modes not yet published o Refine optimistic DUNE assumptions for  recon and backgrounds. o Identify modes for which low backgrounds could be maintained with missing final state particles. o Identify modes for full simulations. Goal April 2016 o Suggestions welcomed 13 January 2016PDK modes; Goodman/Lin15


Download ppt "Update Comprehensive (extensive) Nucleon decay mode list Maury Goodman Lisa Lin 13 January 2016PDK modes; Goodman/Lin1."

Similar presentations


Ads by Google