Presentation is loading. Please wait.

Presentation is loading. Please wait.

Gravity-wave breaking beyond traditional instability concepts U. Achatz Goethe-Universität Frankfurt am Main, Germany 6.10.2008.

Similar presentations


Presentation on theme: "Gravity-wave breaking beyond traditional instability concepts U. Achatz Goethe-Universität Frankfurt am Main, Germany 6.10.2008."— Presentation transcript:

1 Gravity-wave breaking beyond traditional instability concepts U. Achatz Goethe-Universität Frankfurt am Main, Germany 6.10.2008

2 Gravity Waves in the Middle Atmosphere Becker und Schmitz (2003)

3 Gravity Waves in the Middle Atmosphere Becker und Schmitz (2003)

4 Gravity Waves and Clear-Air Turbulence Koch et al (2008)

5 GW Parameterizations multitude of parameterization approaches (Lindzen 1981, Medvedev und Klaassen 1995, Hines 1997, Alexander and Dunkerton 1999, Warner and McIntyre 2001) too many free parameters reasons : –…–… –insufficent knowledge: conditions of wave breaking basic paradigm: breaking of a single wave –Stability analyses (NMs, SVs) –Direct numerical simulations (DNS)

6 Basic Types of GWs Dispersionsrelation: Trägheitsschwerewellen (TSW): Hochfrequente Schwerewellen (HSW):

7 Basic Types of GWs Dispersion relation: Trägheitsschwerewellen (TSW): Hochfrequente Schwerewellen (HSW):

8 Basic Types of GWs Dispersion relation : Inertia-gravity waves (IGW): Hochfrequente Schwerewellen (HSW):

9 Basic Types of GWs Dispersion relation : Inertia-gravity waves (IGW): High-frequency gravity waves (HGW):

10 GW Signatures in Noctilucent Clouds Parvianien (1989)

11 GW Signatures in Noctilucent Clouds Parvianien (1989)

12 GW Signatures in Noctilucent Clouds Parvianien (1989)

13 Traditional Instability Concepts static (convective) instability: amplitude reference (a>1) dynamic instability limited applicability to HGW breaking

14 Traditional Instability Concepts static (convective) instability: amplitude reference (a>1) dynamic instability limited applicability to HGW breaking

15 Traditional Instability Concepts static (convective) instability: amplitude reference (a>1) dynamic instability BUT: limited applicability to GW breaking

16 GW Instabilities Beyond Traditional Concepts IGW: NM: Exponential energy growth simple shear layer: –Static instability if –Dynamic instability if SV: optimal energy growth over a finite time  (Farrell 1988a,b, Trefethen et al. 1993) HGW: Significant horizontal gradients shear-layer concepts fail

17 GW Instabilities Beyond Traditional Concepts IGW: NM: Exponential energy growth simple shear layer: –Static instability if –Dynamic instability if SV: optimal energy growth over a finite time  (Farrell 1988a,b, Trefethen et al. 1993) HGW: Significant horizontal gradients shear-layer concepts fail (e.g. Lombard and Riley 1996, Achatz 2005)

18 Turbulence in GCMs parameterizations in GCMs: –coarse resolution: all GWs, turbulence –high resolution: small-scale GWs, turbulence central: wave-turbulence interaction basic paradigm: breaking of a single wave methods: –stability analyses (normal modes, singular vectors) –direct numerical simulations (DNS)

19 Modell

20 Stability analysis, 2.5D-DNS

21 Turbulent Dissipation Rates in the Mesosphere

22 Breaking of an IGW by an SV (Ri > ¼): Measured dissipation rates 1…1000 mW/kg (Lübken 1997, Müllemann et al. 2003)

23 NMs of an HGW: Growth Rates  = 70°)

24 HGW amplitude after a perturbation by a NM (DNS):

25 Energetics not the gradients in z matter, but those in  ! instantaneous growth rate:

26 Energetics not the gradients in z matter, but those in  ! instantaneous growth rate:

27 Energetics not the gradients in z matter, but those in  ! instantaneous growth rate:

28 Energetics of a breaking HGW with a 0 > 1 Strong growth perturbation energy: shear instability

29 Breaking HGW with a 0 > 1: Dissipation Rates

30 Energetics of a Breaking HGW with a 0 < 1 Strong growth perturbation energy: buoyancy instability

31 Breaking HGW with a 0 < 1: Wave-Wave Interaction

32 Breaking HGW with a 0 < 1: Dissipation Rates

33 Breaking HGW with a 0 < 1: Dissipation rate Dissipation rate (mW/kg) at ist maximum ( t = 5P ):

34 Turbulent Dissipation Rates in the Mesosphere

35 Singular Vectors: normal modes: Exponential energy growth singular vectors: optimal growth over a finite time  (Farrell 1988, Trefethen et al. 1993) characteristic perturbations in a linear initial value problem:

36 SVs: Turbulent Layers

37 SVs: Turbulent Dissipation Rates

38 Summary the Richardson number is not a good criterion for turbulence from gravity waves! IGWs: Breaking by SVs HGWs: Instabilities due to horizontal gradients References: –Achatz (2005, Phys. Fluids) –Achatz and Schmitz (2006a,b, J.Atmos. Sci.) –Achatz (2007a,b, J. Atmos. Sci.) –Achatz (2007c, Adv. Space Res.) –all PDFs available from my web page (http://www.geo.uni-frankfurt.de/iau/ThMet/english/Publications/index.html)http://www.geo.uni-frankfurt.de/iau/ThMet/english/Publications/index.html see also Fritts et al. (2003, 2006, 2008a,b)


Download ppt "Gravity-wave breaking beyond traditional instability concepts U. Achatz Goethe-Universität Frankfurt am Main, Germany 6.10.2008."

Similar presentations


Ads by Google