Presentation is loading. Please wait.

Presentation is loading. Please wait.

L09 12Feb021 Semiconductor Device Modeling and Characterization EE5342, Lecture 9-Spring 2002 Professor Ronald L. Carter

Similar presentations


Presentation on theme: "L09 12Feb021 Semiconductor Device Modeling and Characterization EE5342, Lecture 9-Spring 2002 Professor Ronald L. Carter"— Presentation transcript:

1 L09 12Feb021 Semiconductor Device Modeling and Characterization EE5342, Lecture 9-Spring 2002 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/

2 L09 12Feb022 Diode Switching Consider the charging and discharging of a Pn diode –(N a > N d ) –W d << Lp –For t < 0, apply the Thevenin pair V F and R F, so that in steady state I F = (V F - V a )/R F, V F >> V a, so current source –For t > 0, apply V R and R R I R = (V R + V a )/R R, V R >> V a, so current source

3 L09 12Feb023 Diode switching (cont.) + + VFVF VRVR D R RFRF Sw R: t > 0 F: t < 0 V F,V R >> V a

4 L09 12Feb024 Diode charge for t < 0 xnxn x nc x pnpn p no

5 L09 12Feb025 Diode charge for t >>> 0 (long times) xnxn x nc x pnpn p no

6 L09 12Feb026 Equation summary

7 L09 12Feb027 Snapshot for t barely > 0 xnxn x nc x pnpn p no Total charge removed, Q dis =I R t

8 L09 12Feb028 I(t) for diode switching IDID t IFIF -I R tsts t s +t rr - 0.1 I R

9 L09 12Feb029 Band model review (approx. to scale) q  m ~ 4 + V EoEo E Fm E Fp E Fn EoEo EcEc EvEv E Fi q  s,n q  s ~ 4 + V EoEo EcEc EvEv E Fi q  s,p metaln-type s/cp-type s/c q  s ~ 4 + V

10 L09 12Feb0210 Ideal metal to n-type barrier diode (  m >  s,V a =0) E Fn EoEo EcEc EvEv E Fi q  s,n qsqs n-type s/c qmqm E Fm metal q  Bn qV bi q’nq’n No disc in E o E x =0 in metal ==> E o flat  Bn =  m -  s = elec mtl to s/c barr V bi =  Bn -  n =  m -  s elect s/c to mtl barr Depl reg

11 L09 12Feb0211 Ideal m to n s/c barr diode depletion width xdxd x qN d  Q’ d = qN d x d x  ExEx -E m xdxd (Sheet of neg chg on mtl)= -Q’ d

12 L09 12Feb0212 Real Schottky band structure* Barrier transistion region,  Interface states above  o acc, p neutrl below  o dnr, n neutrl D it  -> oo, q  Bn  = E g -  o Fermi level “pinned” D it  -> 0, q  Bn  =  m -  Goes to “ideal” case

13 L09 12Feb0213 Fig 8.4* (a) Image charge and electric field lines at a metal-diel intf (b) Distortion of the potential barrier due to image forces with E=0 and (c) const E field

14 L09 12Feb0214 Ideal metal to n-type Schottky (V a >0) qV a = E fn - E fm Barrier for electrons from sc to m reduced to q(V bi -V a ) q  Bn the same DR decr E Fn EoEo EcEc EvEv E Fi q  s,n qsqs n-type s/c qmqm E Fm metal q  Bn q(V bi -V a ) q’nq’n Depl reg

15 L09 12Feb0215 Ideal m to n s/c Schottky diode curr

16 L09 12Feb0216 DDiode General Form D [area value] Examples DCLAMP 14 0 DMOD D13 15 17 SWITCH 1.5 Model Form. MODEL D [model parameters].model D1N4148-X D(Is=2.682n N=1.836 Rs=.5664 Ikf=44.17m Xti=3 Eg=1.11 Cjo=4p M=.3333 Vj=.5 Fc=.5 Isr=1.565n Nr=2 Bv=100 Ibv=10 0u Tt=11.54n) *$

17 L09 12Feb0217 Diode Model Parameters Model Parameters (see.MODEL statement) DescriptionUnit Default ISSaturation currentamp1E-14 NEmission coefficient1 ISRRecombination current parameteramp0 NREmission coefficient for ISR1 IKFHigh-injection “knee” currentampinfinite BVReverse breakdown “knee” voltagevoltinfinite IBVReverse breakdown “knee” currentamp1E-10 NBVReverse breakdown ideality factor1 RSParasitic resistanceohm0 TTTransit timesec0 CJOZero-bias p-n capacitancefarad0 VJp-n potentialvolt1 Mp-n grading coefficient0.5 FCForward-bias depletion cap. coef,0.5 EGBandgap voltage (barrier height)eV 1.11

18 L09 12Feb0218 Diode Model Parameters Model Parameters (see.MODEL statement) DescriptionUnit Default XTIIS temperature exponent3 TIKFIKF temperature coefficient (linear)°C -1 0 TBV1BV temperature coefficient (linear)°C -1 0 TBV2BV temperature coefficient (quadratic)°C -2 0 TRS1RS temperature coefficient (linear)°C -1 0 TRS2RS temperature coefficient (quadratic)°C -2 0 T_MEASUREDMeasured temperature°C T_ABSAbsolute temperature°C T_REL_GLOBALRel. to curr. Temp.°C T_REL_LOCALRelative to AKO model temperature °C For information on T_MEASURED, T_ABS, T_REL_GLOBAL, and T_REL_LOCAL, see the.MODEL statement.

19 L09 12Feb0219 The diode is modeled as an ohmic resistance (RS/area) in series with an intrinsic diode. is the anode and is the cathode. Positive current is current flowing from the anode through the diode to the cathode. [area value] scales IS, ISR, IKF,RS, CJO, and IBV, and defaults to 1. IBV and BV are both specified as positive values. In the following equations: Vd= voltage across the intrinsic diode only Vt= k·T/q (thermal voltage) k = Boltzmann’s constant q = electron charge T = analysis temperature (°K) Tnom= nom. temp. (set with TNOM option 

20 L09 12Feb0220 Dinj –N~1, rd~N*Vt/iD –rd*Cd = TT = –Cdepl given by CJO, VJ and M Drec –N~2, rd~N*Vt/iD –rd*Cd = ? –Cdepl =? SPICE Diode Model 

21 L09 12Feb0221 DC Current I d = area  ( I fwd - I rev) I fwd = forward current = I nrm  Kinj + I rec  Kgen I nrm = normal current = IS  (exp ( Vd/(N  Vt))-1) Kinj = high-injection factor For: IKF > 0, Kinj = (IKF/(IKF+ I nrm)) 1/2 otherwise, Kinj = 1 I rec = rec. cur. = ISR  (exp (Vd/(NR·Vt))- 1) Kgen = generation factor = ((1-Vd/VJ) 2 +0.005) M/2 I rev = reverse current = I rev high + I rev low I rev high = IBV  exp[-(Vd+BV)/(NBV·Vt)] I rev low = IBVL  exp[-(Vd+BV)/(NBVL·Vt)}

22 L09 12Feb0222 vD= V ext ln iD Data ln(IKF) ln(IS) ln[(IS*IKF) 1/2 ] Effect of R s V KF ln(ISR) Effect of high level injection low level injection recomb. current V ext -V a =iD*R s

23 L09 12Feb0223 References Semiconductor Device Modeling with SPICE, 2nd ed., by Massobrio and Antognetti, McGraw Hill, NY, 1993. MicroSim OnLine Manual, MicroSim Corporation, 1996.


Download ppt "L09 12Feb021 Semiconductor Device Modeling and Characterization EE5342, Lecture 9-Spring 2002 Professor Ronald L. Carter"

Similar presentations


Ads by Google