Download presentation
Presentation is loading. Please wait.
Published byIra Park Modified over 8 years ago
1
High Precision Spectroscopy of CH 5 + with NICE-OHVMS James N. Hodges, Adam J. Perry and Benjamin J. McCall
2
Outline Motivation CH 5 + Experimental Challenges Current Data Future Direction
3
Infrared Spectroscopy of CH 5 + First Observed in 1999 by White, Tang & Oka Observed by Velocity Modulation Spectroscopy To this day remains completely unassigned E.T. White, J. Tang & T. Oka. Science, 284, 135 (1999). Above: CH 5 + Right: Infrared Spectrum of CH 5 +.
4
Infrared Spectroscopy of CH 5 + 917 Lines Observed Assignment by Subtraction – Removed the spectrum of other species: H 3 +, CH 3 +, C 2 H 3 +, HCO +, HCNH +, CH 4 and Rydberg H 2 E.T. White, J. Tang & T. Oka. Science, 284, 135 (1999).
5
Potential Energy Surface The potential energy surface –120 mimina of C s (I) –120 C s (II) saddlepoints ~ 40 cm -1 above minimum –60 C 2v saddlepoints ~ 300 cm -1 above minimum E.T. White, J. Tang & T. Oka. Science, 284, 135 (1999). X. Wang & T. Carrington Jr. J. Chem. Phys., 129, 234102 (2008). C s (I) C s (II)C 2V
6
Potential Energy Surface E.T. White, J. Tang & T. Oka. Science, 284, 135 (1999). X. Wang & T. Carrington Jr. J. Chem. Phys., 129, 234102 (2008). Zero Point Energy 10917 cm -1 ~ 300 cm -1 ~ 40 cm -1
7
Instrumental Layout OPO YDFL EOM Lock-In Amplifier X & Y Signal Lock-In Amplifier X & Y Signal Wave- meter 40 kHz Plasma Frequency 80 MHz 1 × Cavity FSR 90 o Phase Shift IPSIPS 2f i p s Freq. Comb AOM K. N. Crabtree, et al. Chem. Phys. Lett. (2012), 551, 1-6.
8
Comb Calibration Wave- meter Freq. Comb AOM […] SignalPump
9
Comb Calibration Wave- meter Freq. Comb AOM […] SignalPump
10
Comb Calibration Wave- meter Freq. Comb AOM […] SignalPumpSignal
11
Production of CH 5 + Velocity modulated, l-N 2 cooled, positive column H 3 + + CH 4 CH 5 + + H 2 Low current: ~ 80 mA 6 kHz modulation frequency Ratio 50:1 H 2 :CH 4 Total pressure ~ 1 Torr E.T. White, J. Tang & T. Oka. Science, 284, 135 (1999).
12
Technical Challenges Lower modulation frequency lower current Lower frequency greater noise Higher frequencies lower pressures
13
Technical Challenges No PlasmaHigh current (40 kHz)Low current (6 kHz)
14
Last Year’s Line Wavenumber (cm -1 ) S/N ~ 25
15
Experimental Comparison ParameterOkaUs Current (mA)80200 Frequency (kHz)640 Pressure (Torr)11 H 2 :CH 4 50:1 ~ 50:1
16
Mirror Absorbance
18
Improvements Baked Mirrors –Operating in dry purge box –Prevented rapid degradation of performance
19
Improvements Included a -emitter – 63 Ni –Less plasma noise in lock –Attain lower current
20
Recent Work CH 5 + line @ 2898 cm -1. Approximately 0.5 Intensity as Oka’s line @ 2926 cm -1. S/N ~ 30
21
Experimental Comparison ParameterOkaUs Current (mA)80110 Frequency (kHz)646 Pressure (Torr)10.250 H 2 :CH 4 50:1 ~ 30:1
22
Calibrated Scans and Fits Linecenter (MHz) SNR (MHz) Oka Uncertainty (MHz) Obs.- Oka (MHz) 86880179505 MHz90-18085 MHz
23
Calibrated Scans and Fits Linecenter (MHz) SNR fit (MHz) Oka Uncertainty (MHz) Obs.- Oka (MHz) 8772025340 ~ 2 MHz90-180200 MHz
24
Future Outlook New Mirrors –Have specialized coating –Improved Performance Lamb dips Complete 917 lines 4-line combination differences with complete data set.
25
Acknowledgements Springborn Fellowship NSF GRF (DGE 11- 44245 FLLW)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.