Presentation is loading. Please wait.

Presentation is loading. Please wait.

C.A. Dominguez Centre for Theoretical Physics & Astrophysics University of Cape Town * This talk draws on work done in collaboration with J.I. Jottar,

Similar presentations


Presentation on theme: "C.A. Dominguez Centre for Theoretical Physics & Astrophysics University of Cape Town * This talk draws on work done in collaboration with J.I. Jottar,"— Presentation transcript:

1 C.A. Dominguez Centre for Theoretical Physics & Astrophysics University of Cape Town * This talk draws on work done in collaboration with J.I. Jottar, M. Loewe, R. Röntsch, B. Willlers, Y.Zhang Electromagnetic Form Factors of Hadrons in Quantum Field Theories * ICTP 2008

2 Two different Quantum Field Theory (QFT) Models Kroll-Lee-Zumino Model Abelian, Renormalizable QFT Platform to justify & extend beyond tree-level the well known Vector Meson Dominance (VMD) Model A viable alternative to non- renormalizable QFT (effective) models (e.g. Chiral Perturbation Theory) Dual Large N c QCD (QCD ∞ ) Realization of QCD ∞ inspired in the Dual Resonance Model (Veneziano) NOT an expansion in N c. N c =∞ ab initio, although finite-width corrections can be incorporated NOT the Veneziano model for hadronic scattering

3 VECTOR MESON DOMINANCE Abelian, TREE-LEVEL model No truly QFT platform Not subject to PERTURBATION THEORY improvement

4

5 KROLL – LEE – ZUMINO (KLZ) QFT MODEL

6

7

8 CALCULATING IN KLZ Regularization using DIMENSIONAL REGULARIZATION Renormalization (fields, masses, couplings) Renormalization subtraction point for vertex diagram: q 2 = 0 Renormalization subtraction point for vacuum polarization diagram: q 2 = M 2 ρ

9

10

11

12

13

14 Gounaris-Sakurai empirical width

15

16 KLZ: Strong coupling theory g ≈ 5 & 1/(4 π) 2 per loop Hence: well defined (convergent) perturbative expansion

17 DUAL – LARGE N c QCD QCD ∞

18 QCD ∞ Lim N c → ∞ (N c = 3) ( t’Hooft ’74 & Witten ’79) Spectrum: ∞ number of zero width resonances Im G M2M2

19 Real Spectral Function Im G E2E2

20 CORRECTIONS to 1/N c  / M  10 %

21 RESONANCES  - p + coupling :  -  0 - p +  0 : J PC = 1 - - M   770 MeV M  ’  1340 MeV M ,,  1720 MeV M ,,,  2034 MeV

22 Dual - QCD ∞ Dual Resonance Model Veneziano (1968) ∞ number of zero width resonances, equally spaced Masses & couplings fixed to give an Euler Beta Function

23 M  = 769 MeV M  ’  1340 MeV [EXP.: 1465  25 MeV] M  ’’  1720 MeV [EXP.: 1700  20 MeV] M  ’’’  2034 MeV [EXP.: 2149  17 MeV]

24 PION FORM FACTOR Dual-Large N c QCD

25

26

27

28

29

30

31 PROTON ELECTRIC & MAGNETIC FORM FACTORS  <P f |   F 1 (q 2 ) + i  μν q ν a F 2 (q 2 )/M | P i >

32 e - p + CROSS SECTION G E (q 2 ) = F 1 (q 2 ) + (a q 2 /4M 2 ) F 2 (q 2 ) G M (q 2 ) = F 1 (q 2 ) + a F 2 (q 2 )  R = (- q 2 /4M 2 ) G 2 M (q 2 ) +  G 2 E (q 2 )  

33 ROSENBLUTH METHOD Unpolarized e - p + scattering Measure  R for constant q 2 varying  Determine G M (q 2 ) from intercept Determine G E (q 2 ) from slope Assume Scaling Law :  G E /G M = 1    G E /G M - q 2 1

34 Polarized e - p + Scattering Jefferson Lab Measure longitudinal & transverse polarizations of the recoil proton: P l, P t.  G E /G M  P t / P l.  G E /G M  1 + 0.13 q 2 A zero at – q 2  8 GeV 2

35 Reconciliation between Rosenbluth & Polarization Measurements Second order correction more important in Rosenbluth than in Polarization

36 Nucleon Form Factors Dual-Large N c QCD F 1 (q 2 ) F 2 (q 2 ) G M (q 2 ) G E (q 2 ) G E (q 2 ) / G M (q 2 )

37

38

39

40

41 FORM FACTORS OF Δ (1236) G * M (q 2 ), G * E (q 2 ), G * C (q 2 )

42

43

44

45 SUMMARY KLZ: F π DUAL – N c ∞ : F π, F 1 & F 2 + G E / G M, G M *, G * E, G * C PERFECT FITS


Download ppt "C.A. Dominguez Centre for Theoretical Physics & Astrophysics University of Cape Town * This talk draws on work done in collaboration with J.I. Jottar,"

Similar presentations


Ads by Google