Download presentation
1
Laser Adaptive Optics for Advanced LIGO
UF LIGO GROUP 4/28/2017 Laser Adaptive Optics for Advanced LIGO Liang Zhang with Malik Rakhmanov, Joe Gleason David Tanner, David Reitze, Guido Mueller University of Florida LIGO Group Optics Session 3/17/2004 LIGO-G Z UF LIGO GROUP
2
Acknowledgement NSF Lonnie Houck Derek Kennedy Jinho Lee
Christina Leidel Rachel Parks Luke Williams Wan Wu 3/17/2004 LIGO-G Z
3
Outline Introduction Theory Experiment Future Work Conclusion
UF LIGO GROUP 4/28/2017 Outline Introduction Theory Experiment Future Work Conclusion 3/17/2004 LIGO-G Z UF LIGO GROUP
4
Optical configuration of Advanced LIGO
3/17/2004 LIGO-G Z
5
Input Optics subsystem
3/17/2004 LIGO-G Z
6
Schematic layout of adaptive-lens mode matching telescope
Nd:YAG Laser beam HBS1 (OG515) HBS2 Mirror 1 Heating Beam Mirror 2 3/17/2004 LIGO-G Z
7
Transmittance of SCHOTT glass OG515
1064nm (Nd:YAG) 1000 500 1.0 0.5 514nm (Argon) (nm) 200 0.0 Thickness: 3 mm (sample) Thickness: 15mm (experiment) 3/17/2004 LIGO-G Z
8
Thermal lensing in OG515 Argon laser beam YAG laser beam OG515 An Argon laser is used as heating beam; a YAG laser is used to ‘read’ the thermal lensing effect of OG515. 3/17/2004 LIGO-G Z
9
Optical path length (OPL) change due to thermal effects
Temperature-dependent refractive index Thermal Expansion : coefficient of thermal expansion . Photo-elastic Effect 3/17/2004 LIGO-G Z
10
Theoretical calculation of temperature profile (from J. Lee and R
Theoretical calculation of temperature profile (from J. Lee and R. Parks (UF)) r Boundary Conditions: R z L P: power of the incident light : absorption coefficient K: thermal conductivity w: beam radius R:radius of OG515 3/17/2004 LIGO-G Z
11
Theoretical temperature profile
UF LIGO GROUP 4/28/2017 Theoretical temperature profile P (Argon laser): 6W T(room temperature): 293K. 3/17/2004 LIGO-G Z UF LIGO GROUP
12
Theoretical OPL 3/17/2004 LIGO-G Z
13
Experimental Setup R4 Argon Laser Polarizer Single-Mode Fiber R2 R3 M2 F1 Nd:YAG Laser M3 F2 R1 M1 Faraday Isolator M4 M5 R5 Beam Scan Beamsplitter OG515 M1, M2, M3, M4, M5 are lenses; R1, R2, R3, R4, R5 are mirrors; F1 and F2 are fiber-optic couplers The diameter of collimated Argon laser beam is 16 mm; the diameter of YAG laser on OG515 is 2mm. 3/17/2004 LIGO-G Z
14
Experimental results 3/17/2004 LIGO-G Z
15
Focal length of adaptive lens
Power of Heating beam (W) 3/17/2004 LIGO-G Z
16
Beam Profile Without thermal lensing With thermal lensing The thermal lens doesn’t introduce large amplitude higher order Gaussian modes. 3/17/2004 LIGO-G Z
17
Future work OG515 in a vacuum chamber will be tested.
Fabry-Perot cavity will be used to measure higher order modes mode matching. Bullseye wavefront sensor will be used to measure and correct mode-matching. 3/17/2004 LIGO-G Z
18
Conclusion A variable thermal lens is formed using different powers of a pumping beam. It is possible to control this variable lens to compensate the thermal lensing effects of the optical elements in advanced LIGO. 3/17/2004 LIGO-G Z
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.