Presentation is loading. Please wait.

Presentation is loading. Please wait.

Mitglied der Helmholtz-Gemeinschaft JEDI - The Jülich Electric Dipole Moment Investigations in Storage Rings 31. 10. 2013 | H. Ströher (Forschungszentrum.

Similar presentations


Presentation on theme: "Mitglied der Helmholtz-Gemeinschaft JEDI - The Jülich Electric Dipole Moment Investigations in Storage Rings 31. 10. 2013 | H. Ströher (Forschungszentrum."— Presentation transcript:

1 Mitglied der Helmholtz-Gemeinschaft JEDI - The Jülich Electric Dipole Moment Investigations in Storage Rings 31. 10. 2013 | H. Ströher (Forschungszentrum Jülich, Germany) Colloquium Grenoble October 2013

2 28. Juni 2016 Institut für Kernphysik (IKP) Folie 2 Introduction – Physics Frontiers Energy Intensity Cosmic Precision Complexity Arguably, there are more frontiers, e.g., „simulation“... Electric Dipole Moments (EDM)

3 28. Juni 2016 Institut für Kernphysik (IKP) Folie 3 The European Strategy for Particle Physics, Update 2013 Recommendations EDM – A Top Priority EDM

4 28. Juni 2016 Institut für Kernphysik (IKP) Folie 4 EDM – A Top Priority SNOWMASS Meeting, August 2013 (US HEP Community)

5 28. Juni 2016 Institut für Kernphysik (IKP) Folie 5 EDM – A Top Priority EDMs can contribute to many of the „Big Questions“

6 28. Juni 2016 Institut für Kernphysik (IKP) Folie 6 Physics Case – The Fate of Antimatter The History of the Universe

7 28. Juni 2016 Institut für Kernphysik (IKP) Folie 7 Physics Case – The Fate of Antimatter Particle – antiparticle: creation and annihilation

8 28. Juni 2016 Institut für Kernphysik (IKP) Folie 8 Physics Case – The Fate of Antimatter Why does the Universe contain matter at all and not light only ?

9 28. Juni 2016 Institut für Kernphysik (IKP) Folie 9 Physics Case – The Fate of Antimatter Since there is matter – is there also (relic) antimatter somewhere?

10 28. Juni 2016 Institut für Kernphysik (IKP) Folie 10 AMS – Alpha Magnetic Spectrometer Search for (relic) antimatter!

11 28. Juni 2016 Institut für Kernphysik (IKP) Folie 11 AMS – A Local Asymmetry? AMS-02: first result – „positron fraction“

12 28. Juni 2016 Institut für Kernphysik (IKP) Folie 12 AMS – A Local Asymmetry? Det. AMS-02: has not yet released data on antiprotons …

13 28. Juni 2016 Institut für Kernphysik (IKP) Folie 13 AMS – A Local Asymmetry? Antimatter: need to (unambiguously) observe:  one anti-helium nucleus better:  one anti-carbon nucleus AMS-02: … nor on antimatter AMS-01

14 28. Juni 2016 Institut für Kernphysik (IKP) Folie 14 AMS – A Local Asymmetry? Antimatter has been produced in heavy-ion collisions: AMS: chances might be slim to find cosmic (relic) antimatter

15 28. Juni 2016 Institut für Kernphysik (IKP) Folie 15 Where is the anti- matter ? Search for it ! It´s gone – why ? AMS EDM Physics Case – The Fate of Antimatter The huge baryon-(-antibaryon) asymmetry: local or universal?

16 28. Juni 2016 Institut für Kernphysik (IKP) Folie 16 Physics Case – The Fate of Antimatter The History of the Universe A tiny asymmetry (0.1 ppb)

17 28. Juni 2016 Institut für Kernphysik (IKP) Folie 17 Physics Case – The Fate of Antimatter Sakharov conditions for baryogenesis  SM fulfills all of them Three conditions (A. Sakharov):  There must be processes that change the net matter – anti- matter balance: Baryon number violation  Some matter – antimatter processes must proceed at different rates C- and CP-violation  These processes must occur out of thermal equilibrium

18 28. Juni 2016 Institut für Kernphysik (IKP) Folie 18 Physics Case – CP Violation SM accounts for CP violation (K-, D-, B-mesons) via CKM formalism KLKL ++ e-e- e KLKL -- e+e+ e CP-mirror „Particles“„Anti-particles“ Matter – antimatter symmetry (CP) is violated: „Semileptonic charge asymmetry“ ~ 3 x 10 -3 (more decays into e + than e - )

19 28. Juni 2016 Institut für Kernphysik (IKP) Folie 19 Standard Model CP violation (CPV) Physics Case – CP Violation CKM formalism:  3 angles  1 phase (CPV!) CKM works, but does not explain!

20 28. Juni 2016 Institut für Kernphysik (IKP) Folie 20 Standard Model cannot explain the Baryon Asymmetric Universe Physics Case – CP Violation Baryon asymmetry in the Standard Model N B / N  ~ 10 -18

21 28. Juni 2016 Institut für Kernphysik (IKP) Folie 21 Beyond the Standard Model  new sources of CP violation, e.g., EDM Physics Case – CP Violation Nature seems to violate CP much stronger than the Standard Model predicts

22 28. Juni 2016 Institut für Kernphysik (IKP) Folie 22 Electric dipole moments (EDM) violate P, T (and CP) Physics Case – CP Violation Discrete symmetries ( C, P, T ) CPT Theorem: Any Lorentz-invariant local quantum field theory is invariant under the successive application of C, P, and T. electric dipole moment

23 28. Juni 2016 Institut für Kernphysik (IKP) Folie 23 EDM – Estimate of the Scale Size of the nucleon: D = 1 fm = 10 -13 cm d = 10 -13 e cm Nature violates parity  price to pay: ~ 10 -7 Nature violates CP  price to pay: ~ 10 -3 EDM < 10 -23 e cm Electric dipole moments are very small  precision experiments

24 28. Juni 2016 Institut für Kernphysik (IKP) Folie 24 EDM – Estimate of the Scale Demonstration of the (maximum) size of the effect 1 fm + 1 cm - Nucleon 10 22 fm

25 28. Juni 2016 Institut für Kernphysik (IKP) Folie 25 e   n p  d in atom in atom EDM – Current Upper Limits EDMs will have a huge impact on „Physics beyond the SM“ EDM upper limits (e cm) New: Charged Hadrons natural scale

26 28. Juni 2016 Institut für Kernphysik (IKP) Folie 26 P. Harris, K. Kirch … A huge worldwide effort EDM – Ongoing/planned Searches new

27 28. Juni 2016 Institut für Kernphysik (IKP) Folie 27 nEDM: aim at sensitivity of a few times 10 -28 e cm EDM – Ongoing/planned Searches

28 28. Juni 2016 Institut für Kernphysik (IKP) Folie 28 EDM – Why another Experiment ? Need for different EDMs to pin down the source(s) Strong CP problem Hadron EDMs are complex, richer

29 28. Juni 2016 Institut für Kernphysik (IKP) Folie 29 „JEDI“ (Jülich Electric Dipole Moment Investigations) w/i JARA|Fame EDM – Points to Remember EDM (searches)  have an exceptional physics case  are very hard to measure (in fact, none observed so far!) EDM (searches) EDM (searches)  for charged-particles: use of polarized beams in storage ring(s)

30 28. Juni 2016 Institut für Kernphysik (IKP) Folie 30 Precession frequency (difference)  example: neutron EDM – Measurement Principle (I) µ d B EB E f + = 2µB` + 2dE` f - = 2µB` - 2dE`

31 28. Juni 2016 Institut für Kernphysik (IKP) Folie 31 Momentum and polarization vector EDM – Measurement Principle (II) „Freeze“ horizontal spin of polarized charged particle beam in storage ring along the momentum, … Spin Momentum

32 28. Juni 2016 Institut für Kernphysik (IKP) Folie 32 … after one turn … EDM – Measurement Principle (II) „Freeze“ horizontal spin of polarized charged particle beam in storage ring along the momentum, … Spin Momentum

33 28. Juni 2016 Institut für Kernphysik (IKP) Folie 33 Polarization vector points in different direction („spin tune“) EDM – Measurement Principle (II) „Freeze“ horizontal spin of polarized charged particle beam in storage ring along the momentum, … Spin Momentum

34 28. Juni 2016 Institut für Kernphysik (IKP) Folie 34 „Frozen spin“ (particle momentum and E- and B-fields) EDM – Measurement Principle (II) „Freeze“ horizontal spin of polarized charged particle beam in storage ring along the momentum, …

35 28. Juni 2016 Institut für Kernphysik (IKP) Folie 35 Application of a radial electric field (E): Torque:  ~ d x E (if EDM is non-zero) Observable: development of vertical polarization EDM – Measurement Principle (II) Goal: 10 -29 e cm – a challenge !

36 28. Juni 2016 Institut für Kernphysik (IKP) Folie 36 An incomplete list of challenges EDM – Charged Particles in SRs

37 28. Juni 2016 Institut für Kernphysik (IKP) Folie 37 EDM – Charged Particles in SRs JEDI („Jülich Electric Dipole Moment Investigations“) COSY (Cooler Synchrotron) at FZ-Jülich 184 m

38 28. Juni 2016 Institut für Kernphysik (IKP) Folie 38 EDM – Charged Particles in SRs JEDI („Jülich Electric Dipole Moment Investigations“) COSY (Cooler Synchrotron) at FZ-Jülich  Polarized proton, deuteron beams  Momentum range 0.3 to 3.7 GeV/c  Electron and stochastic cooling  Internal targets and detectors  Spin manipulators: RF solenoid, RF dipole, Siberian Snake  Polarimeter  Best possible starting point for srEDM

39 28. Juni 2016 Institut für Kernphysik (IKP) Folie 39 EDM – Charged Particles in SRs JEDI („Jülich Electric Dipole Moment Investigations“) COSY (Cooler Synchrotron) at FZ-Jülich EDM Sensitivity Time R&D, test measurements at COSY Precursor expt. w/ COSY Dedicated SR Now 10 -24 e cm 10 -29 e cm First direct measurements for p, d

40 28. Juni 2016 Institut für Kernphysik (IKP) Folie 40 EDM – Charged Particles in SRs Stage 1: Ongoing R&D at COSY Polarimetry Tests with an existing polarimeter (EDDA) at COSY: Beam onto a C-target; spin-dependent scattering Proof of principle - required accuracy achieved Results (NIM A 664 (2012) 49); systematic errors < 1ppm

41 28. Juni 2016 Institut für Kernphysik (IKP) Folie 41 EDM – Charged Particles in SRs Stage 1: Ongoing R&D at COSY Spin Tune Measurements ~ 7 x 10 7 ~ 1.2 x 10 7 Deviation ~ 25 ppb

42 28. Juni 2016 Institut für Kernphysik (IKP) Folie 42 EDM – Charged Particles in SRs Stage 1: Ongoing R&D at COSY Spin Coherence Time (SCT) Optimization Tests with an existing polarimeter (EDDA) at COSY: Longitudinal spin decoherence (due to beam oscillations) Decoherence compensated by tuning sextupole magnets Result: SCT of ~ 200 s have already been achieved

43 28. Juni 2016 Institut für Kernphysik (IKP) Folie 43 EDM – Charged Particles in SRs Stage 1: Ongoing R&D at COSY Electrostatic Deflectors L~2.5 m Tests with existing equipment from Tevatron (Fermi Lab, USA): Routine operation at 1 spark/year at 6 MV/m at Tevatron Transfer to Jülich, reproduce and improve (w/ ZEA, RWTH) Installation into COSY (option): B-E-B chicane Replace D2-magnet by electrostatic deflector

44 28. Juni 2016 Institut für Kernphysik (IKP) Folie 44 EDM – Charged Particles in SRs Stage 2: pEDM and/or dEDM  10 -24 e cm Precursor Experiment at COSY Proof-of-principle with existing (conventional) storage ring COSY: Modifications of COSY (ANKE, PAX, WASA, … out) Power supply stabilization; beam position monitors … „Magic“ RF Wien-filter (E-B field):

45 28. Juni 2016 Institut für Kernphysik (IKP) Folie 45 Stage 3: Dedicated storage ring (with COSY as injector) EDM – Charged Particles in SRs Precision EDM Storage Ring Technical design criteria: Counter-rotating (CW, CCW) beams pEDM: all-electric ring possible: (p, d, 3 He, …)EDM: combined electric and magnetic fields

46 28. Juni 2016 Institut für Kernphysik (IKP) Folie 46 EDM Project within JARA|FAME („JEDI“) EDM – Summary EDM (searches)  have an exceptional physics case  are very hard to measure  for charged-particles: use of polarized beams in storage ring(s): Jülich is the „best place on earth“

47 28. Juni 2016 Institut für Kernphysik (IKP) Folie 47 „JEDI“: http://collaborations.fz-juelich.de/ikp/jedi/ EDM – Summary JEDI - Spokespersons A. Lehrach J. Pretz F. Rathmann (FZJ) (RWTH) (FZJ)


Download ppt "Mitglied der Helmholtz-Gemeinschaft JEDI - The Jülich Electric Dipole Moment Investigations in Storage Rings 31. 10. 2013 | H. Ströher (Forschungszentrum."

Similar presentations


Ads by Google