Download presentation
Presentation is loading. Please wait.
Published byElizabeth Clark Modified over 8 years ago
2
Provocation Introduction Recent Initial Mass Function (IMF) work The Star Formation Law (SFL) › Mostly a review Pearls, feathers, and spurs in › Galex Nearby Galxy Atlas › SINGG - SUNGG 2
3
The IMF is not constant All stars do not form in star clusters Dust is a hassle but not a huge problem The SFL works 3
4
Started research by dissecting one galaxy (NGC1705) Moved on to a second (NGC2915) Progressed to larger and larger samples Now prefer working with easily measured quantities from large surveys › Total flux › Effective surface brightness › Color, equivalent widths 4
5
G.R. Meurer ( JHU ) ★✿ H.C. Ferguson (STScI) ★ ✿ R. Webster (Melbourne) ★ ✿ J. Bland Hawthorn (Sydney) ✿ M. Dopita (ANU) ★ M. Doyle (Queensland) ★ ✿ M. Drinkwater (Queensland) ★ ✿ K.C. Freeman (ANU) ★ D. Hanish (Michigan) ★ ✿ J. Heiner (Groningen) ✿ T. Heckman (JHU) ★ R. Kennicutt (Cambridge) ★✿ V. Kilborn (Swinburne) ★✿ J.H. Kim (Seoul) ★✿ P. Knezek (WIYN) ★ ✿ B. Koribalski (ATNF) ★ M. Meyer (UWA) ★ ✿ M. Putman (Columbia) ★✿ E. Ryan-Weber (Cambridge/Swinburne) ★ ✿ M. Seibert (OCIW) ✿ C. Smith (CTIO) ★ L. Staveley-Smith (UWA) ★ ✿ J. Werk (Michigan/Columbia) ★ I. Wong (Yale) ✿ M. Zwaan (ESO) ★ ✿ 5
6
6
7
SINGG - the Survey of Ionization in Neutral Gas Galaxies › H and R band survey SUNGG - the Survey of Ultraviolet emission in Neutral Gas Galaxies › Far and near ultraviolet (FUV, NUV) survey Parent sample of both is HIPASS the HI Parkes All Sky Survey Not related to SINGS, THINGS, SONG, MUSYC, STING, … 7
8
HI Parkes All Sky Survey › HI 21cm › Parkes 64m › 4315 sources Survey of Ionization in Neutral Gas Galaxies › H & R band › CTIO 1.5m › 468 sources selected › 331 observed Survey of Ultraviolet emission in Neutral Gas Galaxies › FUV & NUV › Galex 0.5m › 139 selected › ~200 observed 8
9
H traces O stars M * > ~20 M sun Secondary emission IMF sensitive Vacuum UV traces O and B stars Dominates emitted SED of SF pops very sensitive to dust Starburst99 CSFR models (Leitherer et al 1999) M u = 100 M sun UV H M u = 30 M sun UV H 9
10
Ranges by a factor of 10 Strongly correlates with optical surface brightness Most galaxies below expectations for Salpeter (or Kroupa) IMF Data corrected for dust obscuration From FUV data: all galaxies should have multiple O stars Meurer et al. (2009, ApJ, 695, 765) 10
11
HIPASS J0249-02 log (F H /f FUV ) = 0.51 log( SFR,H ) = -3.28 log( R / R,sun ) = 6.87 UGCA44 IB(s)m: log(M HI /M sun ) = 8.85 log(L R /L R,sun ) = 8.29 11
12
HIPASS J0419-54 log(F H /f FUV ) = 1.33 log( SFR,H ) = -1.21 log( R / R,sun ) = 8.70 NGC1566 SAB(rs)bc log(M HI /M sun ) = 10.19 log(L R /L R,sun ) = 11.09 12
13
13
14
Models of effects of bursting and gasping SFH CSFR + Gaussian increase (burst) or decrease (gasp) in SFR Max/min SFR: 2,10, 100 FWHM = 10, 100, 1000 Myr 14
15
Stochastic effects: Integrated Galactic IMF (Pflamm-Altenburg et al. 2009, MNRAS, 395, 394 ). › Variable IMF › May be a good mathematical description of what IMF becomes Krumholz & McKee ( 2008, Nature, 451, 1082 ) give minimum column density required for massive stars to form, predict H /UV variations Competitive accretion scenario › High mass stars from lower mass cores › growth from accretion of ISM in cluster potential › And “stealing” from lower mass stars › Bonnell et al. (2003, MNRAS, 343, 413; 2004, MNRAS, 349, 735 ; Bonnell & Bate, 2006, MNRAS, 370, 488 ) 15
16
Highest mass stars form in bound clusters ( Bonnell et al. 2003, MNRAS, 343, 413; 2004, MNRAS, 349, 735; Bonnell & Bate, 2006, MNRAS, 370, 488 ) Bound clusters form in dense mol ISM Hydrostatic pressure determines molecular fraction ( McKee & Ostriker 1977, ApJ, 218, 148; Wolfire et al. 2003, ApJ,, 587, 278; Blitz & Rosolowsky 2006, ApJ, 650, 933 ) Pressure also determines how well bound star clusters are when formed ( Elmegreen & Efremov 2007, ApJ, 280, 235; Elmegreen 2008, ApJ, 672, 1006 ) Stars dominate disk plane potential and set hydrostatic pressure Consistent with cluster fraction versus surface brightness ( Meurer et al. 1995, AJ, 110, 2665; Larsen 2004, A&A, 416, 537 ) 16
17
Spirals have high R, H › “Normal” overall IMF › Total SFR probably OK H traces high P star formation Spiral density waves increase P Outer regions can be H weak (Thilker et al. 2005, 2007) 17
18
Schmidt ( 1959, ApJ, 129, 243 ) SFR ∝ g n ; n ~ 2 Kennicutt ( 1989, ApJ, 344, 685; 1998, ApJ, 498, 541; Martin & Kennicutt 2001, ApJ, 555, 301 ) SFR ∝ g N ; N ~ 1.4 when g > c = Q g Q = /( g G) disk stability = epicyclic frequency ~ 0.7 Kennicutt ( 1998, ApJ, 498, 541 ) › N ~ 1.4 › Integrated over galaxies › Also starburst nuclei 18
19
SFR ~ H2 (N = 1.0) Linear relation between molecular gas and SFR 2. R mol = H2 / HI ~ R molecular fraction set by hydrostatic pressure 3. Q(2 Fluids) = constant ISM disks maintained at constant stability Leroy et al. (2008, AJ, 136, 2782 ), Bigiel et al. (2008, AJ, 136, 2846 ) 19
20
H /HI SFR/HI H 2 /HI R mol P(!) Expect 1:1 correlation with R X-axis SFR R r xy 0.76-0.80 Slope0.710.89 +- 0.04 y 0.280.27 x 0.400.30 20
21
Method › Look at 2 and 3 color images › Brief description to text file › grep keywords (e.g. spiral, bar, nuke, ring, pearl, feather, spur, etc…) GALEX Nearby Galaxy Atlas Gil de Paz et al. ( 2007, ApJS, 173, 185 ) › 1034 galaxies 575 with comments Rest featureless, small, or edge-on SINGG & SUNGG › Only galaxies with H and UV 3 color images › 99 galaxies with comments (72 HIPASS targets) 21
22
FeatureNGASINGG Spiral: 30%40% Bar:16%27% Ring:25%10% Nuke:28%33% Note – did not exclude dwarfs Example: NGC7424 H R, RNUVFUV, H RFUV Impressions: H : nice high contrast, but often like connecting the dots UV: lower contrast, worse resolution, but more continuous 22
23
Pearls:10%32% Spurs:9%16% Examples: NGC628 NGC3344 NGC1042 Impression: spiral arms, pearls and spurs have higher contrast in H than UV 23
24
feathers1% 2% dust6%11% Examples: M51 NGC253 Cen A Galex resolution insufficient SF correlated with dust: Dust lanes “filled in”, hard to see 24
25
IMF varies › O stars require high P ISM Like spiral arms (pearls), bars, rings, nuclei › B stars can form in lower P ISM In situ formation in outer disk and inter-arm? SFL can explain › (inner) Radial profiles › Global SF scaling relations › Including H /HI Some spiral substructure easy to spot with SF tracers, and fairly common › Pearls › Spurs 25
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.