Presentation is loading. Please wait.

Presentation is loading. Please wait.

[Topic 11-Duration Models] 1/35 11. Duration Modeling.

Similar presentations


Presentation on theme: "[Topic 11-Duration Models] 1/35 11. Duration Modeling."— Presentation transcript:

1 [Topic 11-Duration Models] 1/35 11. Duration Modeling

2 [Topic 11-Duration Models] 2/35 Modeling Duration Time until retirement Time until business failure Time until exercise of a warranty Length of an unemployment spell Length of time between children Time between business cycles Time between wars or civil insurrections Time between policy changes Etc.

3 [Topic 11-Duration Models] 3/35 The Hazard Function

4 [Topic 11-Duration Models] 4/35 Hazard Function

5 [Topic 11-Duration Models] 5/35 A Simple Hazard Function

6 [Topic 11-Duration Models] 6/35 Duration Dependence

7 [Topic 11-Duration Models] 7/35 Parametric Models of Duration

8 [Topic 11-Duration Models] 8/35 Censoring

9 [Topic 11-Duration Models] 9/35 Accelerated Failure Time Models

10 [Topic 11-Duration Models] 10/35 Proportional Hazards Models

11 [Topic 11-Duration Models] 11/35 ML Estimation of Parametric Models

12 [Topic 11-Duration Models] 12/35 Time Varying Covariates

13 [Topic 11-Duration Models] 13/35 Unobserved Heterogeneity

14 [Topic 11-Duration Models] 14/35 Interpretation What are the coefficients? Are there ‘marginal effects?’ What quantities are of interest in the study?

15 [Topic 11-Duration Models] 15/35 Cox’s Semiparametric Model

16 [Topic 11-Duration Models] 16/35 Nonparametric Approach Based simply on counting observations K spells = ending times 1,…,K d j = # spells ending at time t j m j = # spells censored in interval [t j, t j+1 ) r j = # spells in the risk set at time t j = Σ (d j +m j ) Estimated hazard, h(t j ) = d j /r j Estimated survival = Π j [1 – h(t j )] (Kaplan-Meier “product limit” estimator)

17 [Topic 11-Duration Models] 17/35 Kennan’s Strike Duration Data

18 [Topic 11-Duration Models] 18/35 Kaplan Meier Survival Function

19 [Topic 11-Duration Models] 19/35 Hazard Rates

20 [Topic 11-Duration Models] 20/35 Kaplan Meier Hazard Function

21 [Topic 11-Duration Models] 21/35 Weibull Accelerated Proportional Hazard Model +---------------------------------------------+ | Loglinear survival model: WEIBULL | | Log likelihood function -97.39018 | | Number of parameters 3 | | Akaike IC= 200.780 Bayes IC= 207.162 | +---------------------------------------------+ +---------+--------------+----------------+--------+---------+----------+ |Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| +---------+--------------+----------------+--------+---------+----------+ RHS of hazard model Constant 3.82757279.15286595 25.039.0000 PROD -10.4301961 3.26398911 -3.196.0014.01102306 Ancillary parameters for survival Sigma 1.05191710.14062354 7.480.0000

22 [Topic 11-Duration Models] 22/35 Weibull Model +----------------------------------------------------------------+ | Parameters of underlying density at data means: | | Parameter Estimate Std. Error Confidence Interval | | ------------------------------------------------------------ | | Lambda.02441.00358.0174 to.0314 | | P.95065.12709.7016 to 1.1997 | | Median 27.85629 4.09007 19.8398 to 35.8728 | | Percentiles of survival distribution: | | Survival.25.50.75.95 | | Time 57.75 27.86 11.05 1.80 | +----------------------------------------------------------------+

23 [Topic 11-Duration Models] 23/35 Survival Function

24 [Topic 11-Duration Models] 24/35 Hazard Function with Positive Duration Dependence for All t

25 [Topic 11-Duration Models] 25/35 Loglogistic Model +---------------------------------------------+ | Loglinear survival model: LOGISTIC | | Dependent variable LOGCT | | Log likelihood function -97.53461 | +---------------------------------------------+ +---------+--------------+----------------+--------+---------+----------+ |Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| +---------+--------------+----------------+--------+---------+----------+ RHS of hazard model Constant 3.33044203.17629909 18.891.0000 PROD -10.2462322 3.46610670 -2.956.0031.01102306 Ancillary parameters for survival Sigma.78385188.10475829 7.482.0000 +---------------------------------------------+ | Loglinear survival model: WEIBULL | | Log likelihood function -97.39018 | |Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| +---------+--------------+----------------+--------+---------+----------+ RHS of hazard model Constant 3.82757279.15286595 25.039.0000 PROD -10.4301961 3.26398911 -3.196.0014.01102306 Ancillary parameters for survival Sigma 1.05191710.14062354 7.480.0000

26 [Topic 11-Duration Models] 26/35 Loglogistic Hazard Model

27 [Topic 11-Duration Models] 27/35

28 [Topic 11-Duration Models] 28/35

29 [Topic 11-Duration Models] 29/35

30 [Topic 11-Duration Models] 30/35

31 [Topic 11-Duration Models] 31/35

32 [Topic 11-Duration Models] 32/35

33 [Topic 11-Duration Models] 33/35

34 [Topic 11-Duration Models] 34/35 Log Baseline Hazards

35 [Topic 11-Duration Models] 35/35 Log Baseline Hazards - Heterogeneity


Download ppt "[Topic 11-Duration Models] 1/35 11. Duration Modeling."

Similar presentations


Ads by Google