Download presentation
Presentation is loading. Please wait.
Published byAnnabella Phelps Modified over 8 years ago
2
Contraction kernels and Combinatorial maps Luc Brun L.E.R.I. University of Reims -France luc.brun@univ-reims.fr and Walter Kropatsch P.R.I.P Vienna Univ. of Technology-Austria krw@prip.tuwien.ac.at
3
Content of the talk Combinatorial maps Expected Advantages Irregular Pyramids Contraction Kernels Conclusion
4
Combinatorial Maps Definition G=(V,E) G=(D, , ) decompose each edge into two half- edges(darts) : - : edge encoding D ={-6,…,-1,1,…,6} 1 -5 2 -34 -4 5 -2 6 -6 3
5
Combinatorial Maps Definition G=(D, , ) : vertex encoding * (1)=(1, * (1)=(1,3 * (1)=(1,3,2) 12 3 -3 4 -4 5 -5 -2 6 -6
6
Combinatorial Maps Properties Computation of the dual graph : * (-1)=(-1,3,4 * (-1)=(-1,3,4,6) 1 5 -5 -4 -3 -6 6 2 -2 4 3 12 3 -3 4 -4 5 -5 -2 6 -6 * (-1)=(-1,3 * (-1)=(-1 G=(D, , )G=(D, = , )
7
Reduction operations Removal operation: not allowed for bridges Contraction operation: not defined for self- loops 3 -3 4 -4 5 -5 -2 6 -6 12 d = *(3) 1 5-5-4 -3 -6 6 2 -2 4 3 1 5 -5 -4-4 -66 2 -2 4 d = *(3) 4 -4 5 -5 -2 6 -6 12
8
Reduction operation Property Removal and Contraction preserve the orientation 1 2 3 4 d c b a 1 2 3 4 d c b a
9
Expected Advantages May encode many topological features (multiple boundaries, surrounding relationships...) Encode explicitely the orientation of edges around each vertex Efficient encoding of the dual (may be implicitely encoded) May be extended to higher dimensions
10
Irregular Pyramids Definition: Stack of successively reduced graphs Advantages Efficient computation of global features through local computations Describe several level of details of a same image Construction scheme Contraction parameter: Defines which edges must be contracted Contraction operations
11
Contraction Kernel G=(D, , ), K D K is a contraction Kernel iff K defines a forest of G, K preserves the image boundary SD=D-K is called the set of surviving darts.
12
Example of Contraction : K Selection of K 1 Contraction of K 1 Selection of redundant double edges Contraction of K 2 Removal of redundant double edges Selection of K 2
13
Equivalent Contraction kernels K1K1 K2K2 K3K3
14
Reduction operation Example 1 23 4 56 7 89 10 1112 13141516 17181920 21222324 K=
15
Reduction operation Example 1 23 4 56 7 89 10 1112 131415 16 171819 20 212223 24 K= G=(D, , ) G’=(D-K, ’, ) ?
16
Reduction operation How to compute the contracted combinatorial map ? What is the value of ’(-2) ? 12 4 1314 15 -2 2 4 13 14 15 -2 13
17
Reduction operation How to compute the contracted combinatorial map ? What is the value of ’(-2) ? 12 4 1314 15 -2 -13 17 7 2 4 14 15 -2 17 7
18
Connecting Walk 1 2 3 4 56 7 89 10 1112 1314 1516 1718 1920 2122 2324 -2 CW(-2)=-2.13.17.21. 10 For each d SD
19
Construction of the contracted map 1 2 3 4 56 7 89 10 11 12 1314 1516 1718 1920 2122 2324 -2 For each d in SD=D-K d’= (d) While( d’ K) d’= (d) ’(d)=d’ Sequential Algorithm
20
Construction of the contracted map 1 2 3 4 56 7 89 10 1112 1314 1516 1718 1920 2122 2324 -2 2 3 56 89 11 12 1516 1920 2324 -2 18 14 22 7 4 -11
21
Parallel computation of the contracted map Each dart traverses in parallel its connecting walk 12 1011 13 17 21 -2 -1 13 17 21 10 11 13 17 21 10 11 11 17 21 10 11 11 11 21 10 11 11 11 11 10 11 11 11 11 11 11 11 11 11 11 11 Survive[d]=d While(Survive[d] K) Survive[d]=Survive[ (d)]
22
Conclusion Construction of the pyramid by contraction of Combinatorial maps. Sequential/Parallel algorithms based on Contraction Kernels Equivalent Contraction Kernels increase/decrease the decimation ratio
23
Perspectives Explicit / Implicit encoding General/optimised contraction kernel
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.