Download presentation
Presentation is loading. Please wait.
Published byMargaret Kelly Modified over 8 years ago
1
New Results for Compton Scattering on Deuterium: A Better Determination of the Neutron Electromagnetic Polarizabilities University of Kentucky
2
George Washington University Jerry Feldman Jerry Feldman Lund University Bent Schröder Bent Schröder Lennart Isaksson Kevin Fissum Magnus Lundin Kurt Hansen Jason Brudvik University of Illinois Alan Nathan Alan Nathan Luke Myers Luke Myers University of Kentucky Mike Kovash Mike Kovash Khayrullo Shoniyozov Khayrullo Shoniyozov Duke University Sean Stave Seth Henshaw University of Glasgow John Annand Theory support H. Griesshammer (GWU) J. McGovern (Manchester) D. Phillips (Ohio)
3
Introduction polarizability – measure of induced dipole moment in external field for the free nucleon: fundamental structure constants (and not so well known) test of models of nucleon structure electric magnetic D = E M = B = – d · E – ½ |E| 2 = – · B – ½ |B| 2 q, 1 st order response , 2 nd order response internal (lowest order response of internal structure)
4
electric polarizability: separation of charge D = 0D = 0D = 0D = 0 D = ED = ED = ED = E paramagnetic polarizability: moments align with B M = 0M = 0M = 0M = 0 M = para B + diamagnetic polarizability: induced current opposes B M = dia B
5
Measuring Nucleon Polarizability Neutron difficulties no free neutron targets neutron is uncharged (no Thomson scattering) techniques neutron scattering by heavy nucleus quasi-free Compton scattering: D (, n ) p D (,) D elastic Compton scattering: D (,) D Proton Compton scattering p p () r 0 2 – 2 r 0 p 2 n 2 n () n 2 4 ( p n ) D () r 0 2 – 2 r 0 ( p n ) 2
6
Proton Polarizability
7
Neutron Polarizability Experiments Alexandrov (Dubna – 1986) Koester (Munich – 1986) Schmiedmayer (Vienna/Harwell – 1986) Koester (Munich – 1988) Schmiedmayer (Vienna/ORNL – 1991) Koester (Munich – 1995) Enik (Dubna – 1997) Laptev (Gatchina – 2002) n scattering D(,n)pD(,n)pD(,n)pD(,n)p Rose (Gottingen/Mainz – 1990) Kolb (SAL – 2000) Kossert (Mainz – 2003) n = 12.6 1.5(stat) 2.0(syst) n = 12.5 1.8(stat)(syst) 1.1(model) +1.1 –0.6 n = 2.7 1.8(stat) (syst) 1.1(model) +0.6 –1.1
8
Elastic Compton Scattering on D Motivation sum sum of proton and neutron polarizabilities ( p + n ) D () r 0 2 – 2 r 0 ( p + n ) 2 Requirements elastic must separate elastic from breakup! monoenergetic (tagged) photons high-resolution photon detector (E/E < 2% at 100 MeV) Data Lucas – Illinois (1994)E = 49, 69 MeV Hornidge – SAL (2000)E = 85-105 MeV Lundin – Lund (2003)E = 55, 66 MeV Theory diagrammatic approach (Levchuk/L’vov) EFT (Griesshammer, McGovern, Phillips)
9
World Data Set Lucas – Illinois (1994) E = 49, 69 MeV Hornidge – SAL (2000) E = 85-105 MeV Lundin – Lund (2003) E = 55, 66 MeV Myers – Lund (2014) E = 65-115 MeV = 60 º, 120 º, 150 º
10
Status of Nucleon Polarizability proton neutron deuteron data set is much smaller than proton 29 vs. 170 data points deuteron data covers much narrower energy range 49-95 MeV vs. 40-170 MeV
11
Experiment at Lund E = 65-115 MeV using tagged photons energies: E = 65-115 MeV using tagged photons two tagger settings: 65-97 and 81-115 MeV bin data in E = 8 MeV energy bins = 60°, 120°, 150°90° angles: = 60°, 120°, 150° (plus recent 90°) with 3 NaI detectors simultaneously detectors: 3 large-volume (50 cm 50 cm) NaI’s excellent photon energy resolution (E /E ~ 2%) BUNI: Boston Univ. CATS: Mainz Univ. UK: Univ. of Kentucky UK CATS BUNI 120 o
12
Kinematic Coverage (23) (5) (18) (6)
13
Washington Location of MAX-Lab
14
MAX1 PSR MAX2 MAX3 125 MeV Linacs Nuclear Physics Upgrade to double linac in 2002-04 Install SAL tagger magnet in 2005 First beam delivered in Sept. 2005 First beam delivered in Sept. 2005
15
Experimental Area at MAX-Lab CATS 60° BUNI 120° DIANA 150° Tagging Spectrometer
16
NaI Detectors
17
CATS NaI Detector 48 cm 27 cm Front View 64 cm Side View 2 MeV E = 100 MeV
18
Timing Cuts
19
Carbon Deuterium Carbon vs. Deuterium 1 day 15 days!!
20
Background Subtraction
21
Data Analysis Extraction of yields subtraction of cosmics subtraction of accidentals Determination of photon flux tagging efficiency ( N = tag N e ) Simulation of expt. geometry and NaI response effective solid angle and target thickness overall detector efficiency Corrections for rate-dependent effects stolen coincidences ghost events in tagger focal plane beam time structure profile
22
Rate-Dependent Corrections Myers et al. (2013) Preston et al. (2014)
23
d /d (nb/sr) E (MeV) Myers et al. (2014)
24
d /d (nb/sr) E (MeV) Myers et al. (2014) o Lucas Lundin Hornidge ● Myers
25
d /d (nb/sr) (deg) 0 30 60 90 120 150 (deg) Lucas Lundin Myers Myers et al. (2014)
26
d /d (nb/sr) (deg) 0 30 60 90 120 150 (deg) Myers Hornidge Myers et al. (2014)
27
Summary and Outlook New elastic Compton scattering data on deuterium roughly doubles world data set (first new data since 2003) roughly doubles world data set (first new data since 2003) higher energy extends data to higher energy, more backward angles reduces statistical uncertainty by 30% for n and n More data coming! (Shoniyozov – Kentucky) concentrate on measurements in the 81-115 MeV range greater sensitivity to polarizabilities more angles covered (60 º, 90 º, 120 º, 150 º ) better statistics, smaller rate-dependent corrections
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.