Presentation is loading. Please wait.

Presentation is loading. Please wait.

Solution of Laplace’s Equation in Spherical coordinates by Separation of Variables إعداد د. جمال بن حمزة مدني قسم الفيزياء – جامعة الملك عبد العزيز جدة.

Similar presentations


Presentation on theme: "Solution of Laplace’s Equation in Spherical coordinates by Separation of Variables إعداد د. جمال بن حمزة مدني قسم الفيزياء – جامعة الملك عبد العزيز جدة."— Presentation transcript:

1 Solution of Laplace’s Equation in Spherical coordinates by Separation of Variables إعداد د. جمال بن حمزة مدني قسم الفيزياء – جامعة الملك عبد العزيز جدة 1

2 Laplace’s equation In spherical coordinates it takes the form Solution of Laplace’s Equation in Spherical coordinates by Separation of Variables 2

3 Laplace’s equation Solution of Laplace’s Equation in Spherical coordinates by Separation of Variables We shall consider potentials which has azimuthal symmetry, so that V is independent of the angle  3

4 Solution of Laplace’s Equation in Spherical coordinates by Separation of Variables 4

5 This part depends on r only This part depends on  only 5

6 Solution of Laplace’s Equation in Spherical coordinates by Separation of Variables 6

7 7

8 The only acceptable solution here is when is integer. That why we took this fancy form for the constant. The solutions are Legendre polynomials in the variable cos . I shall discus Legendre polynomials soon. 8

9 Solution of Laplace’s Equation in Spherical coordinates by Separation of Variables There is no need to include the constant c here because it is absorbed into A and B. 9

10 Solution of Laplace’s Equation in Spherical coordinates by Separation of Variables Separation of variable variables an infinite set of solutions, one for each. The general solution is the linear combination of solutions. 10

11 Solution of Laplace’s Equation in Spherical coordinates by Separation of Variables azimuthal symmetry 11

12 Legendre Polynomials These are the solution of the differential equation 12

13 Legendre Polynomials We can produce any of P by using Rodrigues formula 13

14 Legendre Polynomials Example : calculate P 3 14

15 Legendre Polynomials Example : calculate P 3 15

16 Legendre Polynomials complete orthogonal 16

17 Legendre Polynomials orthogonal 17

18 18

19 19

20 20

21 21

22 Let 22

23 23

24 24

25 25

26 تمرين مساعدة اكتب x 2 كمجموع من P 0 و P 2 نهاية المحاضرة 26


Download ppt "Solution of Laplace’s Equation in Spherical coordinates by Separation of Variables إعداد د. جمال بن حمزة مدني قسم الفيزياء – جامعة الملك عبد العزيز جدة."

Similar presentations


Ads by Google