Download presentation
Presentation is loading. Please wait.
Published byChristiana Osborne Modified over 8 years ago
3
RUIN RESERVS
5
Our Equation Method of successive approximations For example…
6
Let us have K-th iteration
7
This is time grid
8
To obtain we use values of in grid nodes
9
And so on…
10
To obtain we use values of in grid nodes And so on… just the same way
11
Due to independent nature of calculations we can use more then one core (up to number of greed nodes)…. To obtain we use values of in grid nodes
12
And as a result we can interpolate
13
RUIN RESERVS We need millions of such simulations! For real time modelling we need parallelization
14
Parallel actuarial simulations Random outcome= Company simulation (Inputs) Inputs – hundreds Simulations – millions Example: Ruin Probability= Fraction of ruined trajectories
16
Realistic simulation models Adjusted to law regulations Real world data Optimization over any parameter (multi criteria task) Based on parallel simulations GPU accelerated - powered by CUDA User friendly
18
Just an α version…
19
Probability of insolvency (Ruin) as a function of parameter (dividend rate)
20
Resudual capital and dividends as functions of parameter (dividend rate)
21
Efficient frontier (Profit vs Risk) allows to select a tradeoff point
22
Per quarter normalized claim statistics of a well- known Ukrainian insurance company with foreign capital.
26
Insurance simulation model based on real world data. Risk/Profit optimization (Efficient frontier constructing) Any parameter can be an optimization variable. Real time GPU accelerated Monte Carlo method. (about 1 second for billions of trajectories) And at last User friendly interface turns RMS 0.2 in a very efficient and nice system
27
Kaufmann R., Gadmer A., Klett R. Introduction to dynamic financial analysis // ASTIN Bulletin, Vol. 31, No. 1, 2001, pp. 213-249. Norkin B. Parallel computations in insurance business optimization //Proceedings of the 1-st International Conference on High Performance Computing. October 12-14, 2011, Kyiv, Ukraine. – P. 33- 39. Норкин Б.В. Распараллеливание методов оценки риска банкротства страховой компании // Теорія оптимальних рішень. – Київ : Інститут Кібернетики, 2010. – Стор. 33-39. Норкин Б.В. О вероятности разорения управляемого процесса авторегрессии // Комп’ютерна математика. Ін-т кібернетики ім. В.М. Глушкова. Київ, 2011. – С. 142-150.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.