Download presentation
Presentation is loading. Please wait.
Published byKelly Patterson Modified over 8 years ago
1
Canadian Bioinformatics Workshops www.bioinformatics.ca
2
Cold Spring Harbor Laboratory & New York Genome Center In collaboration with
3
3Module #: Title of Module
4
Module 6 Structural variant calling
5
Module 6: Structural variant calling bioinformatics.ca Learning Objectives of Module To understand what are structural variants (SVs) To appreciate how SVs are discovered from NGS data To appreciate the strengths and weaknesses of each SV discovery strategy To recognize the sequence alignment SV “signals” To be able to visually explore read support for SVs
6
Module 6: Structural variant calling bioinformatics.ca Structural Variants (SVs) Structural Variants (SVs): Genomic rearrangements that affect >50bp (or 100bp, or 1Kb) of sequence, including: deletions novel insertions inversions mobile-element transpositions duplications translocations Adapted from Alkan et al. 2011
7
Module 6: Structural variant calling bioinformatics.ca Detection and confirmation of SVs Feuk et al. 2006
8
Module 6: Structural variant calling bioinformatics.ca Can higher resolution maps help identify recurrent aberrations and driver mutations in cancer? Structural variants in cancer
9
Module 6: Structural variant calling bioinformatics.ca Classes of SVs Copy number variants (CNVs): – Deletions – Duplications Copy neutral rearrangements: – Inversions – Translocations Other structural variants: – Novel insertions – Mobile-element transpositions
10
Module 6: Structural variant calling bioinformatics.ca Classes of SVs Alkan et al. 2011
11
Module 6: Structural variant calling bioinformatics.ca Aaron Quinlan Our understanding is driven by technology
12
Module 6: Structural variant calling bioinformatics.ca Array-based detection of CNVs Alkan et al. 2011
13
Module 6: Structural variant calling bioinformatics.ca Detecting SVs from NGS data Meyerson et al. 2010
14
Module 6: Structural variant calling bioinformatics.ca Strategies for calling SVs from NGS data Baker 2012 1. 2. 3.4.
15
Module 6: Structural variant calling bioinformatics.ca Strategies for calling SVs from NGS data Baker 2012 1.
16
Module 6: Structural variant calling bioinformatics.ca Discordant read pairs Read 1 Read 2 insert size ConcordantDiscordant (distance too long) Discordant (distance too short) Genomic distance between mapped paired tags Reads pairs are also Discordant when order or orientation isn’t as expected.
17
Module 6: Structural variant calling bioinformatics.ca Using discordant reads to detect SVs Adapted from Aaron Quinlan
18
Module 6: Structural variant calling bioinformatics.ca Using discordant reads to detect SVs Adapted from Aaron Quinlan
19
Module 6: Structural variant calling bioinformatics.ca Using discordant reads to detect SVs Adapted from Aaron Quinlan
20
Module 6: Structural variant calling bioinformatics.ca Using discordant reads to detect SVs Adapted from Aaron Quinlan
21
Module 6: Structural variant calling bioinformatics.ca Read-pair tools BreakDancer VariationHunter MoDIL GASV-PRO DELLY LUMPY GenomeSTRiP…
22
Module 6: Structural variant calling bioinformatics.ca Detecting SVs with read-pairs Hillmer et al. 2011
23
Module 6: Structural variant calling bioinformatics.ca Read-pairs in complex regions Hillmer et al. 2011
24
Module 6: Structural variant calling bioinformatics.ca Read-pair summary Weaknesses – Difficult to interpret read-pairs in repetitive regions – Difficult to fully characterize highly rearranged regions – High rate of false positives Strengths: – Most classes of variation can, in principle, be detected
25
Module 6: Structural variant calling bioinformatics.ca Strategies for calling SVs from NGS data Baker 2012 2.
26
Module 6: Structural variant calling bioinformatics.ca Read-depth Aaron Quinlan
27
Module 6: Structural variant calling bioinformatics.ca Read-depth Aaron Quinlan
28
Module 6: Structural variant calling bioinformatics.ca Normalization issues
29
Module 6: Structural variant calling bioinformatics.ca Population based SV detection : PopSV Monlong et al. in preparation
30
Module 6: Structural variant calling bioinformatics.ca Read depth tools ReadDepth RDXplorer cnvSeq CNVer CopySeq GenomeSTRiP CNVnator PopSV …
31
Module 6: Structural variant calling bioinformatics.ca Read-depth summary Weaknesses – Relatively low resolution (normally ~10Kb) – Cannot detect balanced rearrangements (e.g., inversions), or transposon insertions Strengths: – Determines DNA copy number (unlike most other methods) – Provides useful information even with low coverage, albeit at low resolution
32
Module 6: Structural variant calling bioinformatics.ca Strategies for calling SVs from NGS data Baker 2012 3.
33
Module 6: Structural variant calling bioinformatics.ca Split reads Rausch et al. 2012
34
Module 6: Structural variant calling bioinformatics.ca Split read tools Pindel DELLY LUMPY PRISM Mobster …
35
Module 6: Structural variant calling bioinformatics.ca Split reads summary Weaknesses – Requires sufficient coverage – Can have false positives especially in repetitive regions Strengths: – Can be added to read-pairs methods – Base-pair resolution of breakpoints
36
Module 6: Structural variant calling bioinformatics.ca Strategies for calling SVs from NGS data Baker 2012 4.
37
Module 6: Structural variant calling bioinformatics.ca De novo assembly for SVs Adapted from Alkan et al. 2011
38
Module 6: Structural variant calling bioinformatics.ca De novo assembly tools for SVs Cortex SGA DISCOVAR ABySS Ray …
39
Module 6: Structural variant calling bioinformatics.ca De novo assembly for SVs summary Weaknesses – Computationally very intensive – Hard to resolve repetitive and complex regions Strengths: – Base-pair resolution of breakpoints – All classes of variation can, in principle, be detected
40
Module 6: Structural variant calling bioinformatics.ca Summary of strategies for calling SVs Aaron Quinlan
41
Module 6: Structural variant calling bioinformatics.ca Bottom line: try many methods and validate Mills et al. 2011Kloosterman et al. 2015
42
Module 6: Structural variant calling bioinformatics.ca Visual validation: a deletion Aaron Quinlan
43
Module 6: Structural variant calling bioinformatics.ca Visual validation: a duplication Aaron Quinlan
44
Module 6: Structural variant calling bioinformatics.ca Visual validation: an inversion Aaron Quinlan
45
Module 6: Structural variant calling bioinformatics.ca Visual validation: an insertion Aaron Quinlan (in the reference)
46
Module 6: Structural variant calling bioinformatics.ca SVs summary view : Circos plots circos.ca
47
Module 6: Structural variant calling bioinformatics.ca Lab time!
48
Module 6: Structural variant calling bioinformatics.ca We are on a Coffee Break & Networking Session
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.