Presentation is loading. Please wait.

Presentation is loading. Please wait.

Use patterns to multiply special binomials.. There are formulas (shortcuts) that work for certain polynomial multiplication problems. (a + b) 2 = a 2.

Similar presentations


Presentation on theme: "Use patterns to multiply special binomials.. There are formulas (shortcuts) that work for certain polynomial multiplication problems. (a + b) 2 = a 2."— Presentation transcript:

1 use patterns to multiply special binomials.

2 There are formulas (shortcuts) that work for certain polynomial multiplication problems. (a + b) 2 = a 2 + 2ab + b 2 (a – b) 2 = a 2 – 2ab + b 2 (a – b)(a + b) = a 2 - b 2 Being able to use these formulas will help you in the future when you have to factor. If you do not remember the formulas, you can always multiply using distributive, FOIL, or the box method.

3 Let’s try one! 1) Multiply: (x + 4) 2 You can multiply this by rewriting this as (x + 4)(x + 4) OR You can use the following rule as a shortcut: (a + b) 2 = a 2 + 2ab + b 2 For comparison, I’ll show you both ways.

4 1) Multiply (x + 4)(x + 4) First terms: Outer terms: Inner terms: Last terms: Combine like terms. x 2 +8x + 16 x+4 x x 2 +4x +16 The square of a binomial results in a Perfect square trinomial, note the 1 st and last term x2x2 +4x +16 Notice you have two of the same answer? Now lets try it with the formula

5 1) Multiply: (x + 4) 2 using (a + b) 2 = a 2 + 2ab + b 2 a is the first term, b is the second term (x + 4) 2 a = x and b = 4 Plug into the formula a 2 + 2ab + b 2 (x) 2 + 2(x)(4) + (4) 2 Simplify. x 2 + 8x+ 16 This is the same answer! That’s why the 2 is in the formula!

6 2)Multiply: (3x + 2y) 2 using (a + b) 2 = a 2 + 2ab + b 2 (3x + 2y) 2 a = 3x and b = 2y Plug into the formula a 2 + 2ab + b 2 (3x)2 + 2(3x)(2y) + (2y)2 Simplify 9x 2 + 12xy +4y 2

7 Multiply (2a + 3) 2 1.4a 2 – 9 2.4a 2 + 9 3.4a 2 + 36a + 9 4.4a 2 + 12a + 9

8 Multiply: (x – 5) 2 using (a – b) 2 = a 2 – 2ab + b 2 Everything is the same except the signs! (x) 2 – 2(x)(5) + (5) 2 x 2 – 10x + 25 4) Multiply: (4x – y) 2 (4x) 2 – 2(4x)(y) + (y) 2 16x 2 – 8xy + y 2

9 Multiply (x – y) 2 1.x 2 + 2xy + y 2 2.x 2 – 2xy + y 2 3.x 2 + y 2 4.x 2 – y 2

10 5) Multiply (x – 3)(x + 3) First terms: Outer terms: Inner terms: Last terms: Combine like terms. x 2 – 9 x-3 x +3 x 2 +3x -3x -9 This is called the difference of squares. x2x2 +3x -3x -9 Notice the middle terms eliminate each other!

11 5) Multiply (x – 3)(x + 3) using (a – b)(a + b) = a 2 – b 2 You can only use this rule when the binomials are exactly the same except for the sign. (x – 3)(x + 3) a = x and b = 3 (x) 2 – (3) 2 x 2 – 9

12 6) Multiply: (y – 2)(y + 2) (y) 2 – (2) 2 y 2 – 4 7) Multiply: (5a + 6b)(5a – 6b) (5a) 2 – (6b) 2 25a 2 – 36b 2

13 Multiply (4m – 3n)(4m + 3n) 1.16m 2 – 9n 2 2.16m 2 + 9n 2 3.16m 2 – 24mn - 9n 2 4.16m 2 + 24mn + 9n 2


Download ppt "Use patterns to multiply special binomials.. There are formulas (shortcuts) that work for certain polynomial multiplication problems. (a + b) 2 = a 2."

Similar presentations


Ads by Google