Download presentation
Presentation is loading. Please wait.
Published byCamron Stafford Modified over 8 years ago
1
Introduction to the NEURON simulator Arnd Roth Wolfson Institute for Biomedical Research University College London
2
Mel, 1994
3
How do neurons transform synaptic inputs into action potential output?
4
What are the functional compartments in neurons?
5
How do networks of neurons work? Helmstaedter et al., 2013
6
How do networks of neurons work?
7
Single neuron and network simulators NEURON http://www.neuron.yale.edu/neuron/http://www.neuron.yale.edu/neuron/ GENESIS https://www.genesis-sim.org/https://www.genesis-sim.org/ MOOSE http://moose.ncbs.res.in/http://moose.ncbs.res.in/ PSICS http://www.psics.org/http://www.psics.org/ NEST http://www.nest-initiative.org/http://www.nest-initiative.org/
8
Passive cable models: Ingredients Specific resistivity of the intracellular medium, R i = 70 to 150 Ω cm Specific capacity of the cell membrane, C m = ~1 µF cm –2 Specific membrane resistance, R m = 10 to 100 kΩ cm 2 Membrane potential V(x,t) Axial current i a (x,t) Membrane current i m (x,t)
9
Steady-state condition (“leaky-end” boundary)
10
Steady-state condition Dendritic trees Rall & Rinzel, 1973 (Rinzel & Rall, 1974 - transient solution)
11
Steady-state attenuation of voltage in cerebellar Purkinje cells Roth & Häusser, 2001
12
Transient input
13
Dendritic democracy: EPSPs in Purkinje cells
14
EPSPs in pyramidal cells
15
Spatial and temporal summation of subthreshold synaptic potentials Rall, 1964
16
Backpropagation of action potentials Stuart & Sakmann, 1994
17
Experimental measurements of action potential backpropagation: variability between cell types Stuart, Spruston, Sakmann & Häusser, 1997 Distance from soma (µm) Normalized AP amplitude
18
Action potential backpropagation in simulations isolating morphology as the only variable Vetter, Roth & Häusser, 2001
19
Morphology determines the sensitivity of backpropagation to modulation of channel densities
20
Constructing equivalent cable representations
21
Constructing equivalent cable representations
22
Equivalent cables – reduced models of dendrites predicting backpropagation with high reliability
23
Action potential backpropagation and Purkinje cell development Original morphologies Equivalent cables
24
The structure of NEURON Simulation engine Scripting language for running simulations: hoc (+ Python) Mechanism description language: NMODL Graphical user interface: InterViews Extensions and interoperability (Python, NeuroML)
25
Compartmentalization in NEURON “section” “segment”
26
Compartmentalization in NEURON nseg = 2 v(0) v(0.25) v(0.75) v(1)
27
A sample hoc script create cable access cable L = 10000 /* micron */ diam = 1 /* micron */ nseg = 1001 insert pas g_pas = 1/20000 /* 1/(Ohm*cm^2) = Siemens/cm^2 */ e_pas = -65 /* mV */ xopen("cable.ses")
28
Important built-in variables in hoc t/* ms */ dt/* ms */ L/* micron */ diam/* micron */ nseg cm/* µF/cm^2 */ Ra/* Ω*cm */ g_pas/* S/cm^2 = 1/(Ω*cm^2) */ e_pas/* mV */ celsius/* °C */
30
NEURON documentation http://www.neuron.yale.edu/neuron/static/new_doc/index.html
31
An example model Mainen & Sejnowski (1996): ModelDB https://senselab.med.yale.edu/Mode lDB/ShowModel.cshtml?model=24 88
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.