Download presentation
Presentation is loading. Please wait.
Published byAmberly McKenzie Modified over 8 years ago
1
Chapter 9. Computation of Discrete Fourier Transform 9.1 Introduction 9.2 Decimation-in-Time Factorization 9.3 Decimation-in-Frequency Factorization 9.4 Application of FFT 9.5 Fast Computation of DCT 9.6 Matrix Approach 9.7 Prime Factor Algorithm BGL/SNU
2
1. Introduction BGL/SNU
5
- Example of fast computation BGL/SNU
7
2. Decimation-in-Time Factorization BGL/SNU
11
Decimation-in-time FFT flow graphs BGL/SNU
12
Decimation-in-time FFT flow graphs BGL/SNU
13
Decimation-in-time FFT flow graphs BGL/SNU
14
(Sande- Tuckey) FFT 3. Decimation-in-frequency Factorization BGL/SNU
15
g(n) h(n) g[0] g[1] g[2] g[3] h[0] h[1] h[2] h[3] X[0] X[2] X[4] X[6] X[1] X[3] X[5] X[7] x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]
16
Final flow graph X[0] X[4] X[2] X[6] X[1] X[5] X[3] X[7] x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7] BGL/SNU
17
-Remarks - # Stages - # butterflies - # computations - inplace computations - output data ordering : bit-reversed -Question The flow graph for D-I-F is obtained by reversing. The direction of the flow graph for D-I-T. Why? -Omit Sections 9.5-9.7 BGL/SNU
18
(1) Spectrum Analysis - is the spectrum of x[n], n=0,1,…,N-1 - Inverse transform can be done through the same mechanism i) Take the complex conjugate of X[k] ii) Pass it through the FFT process, But with one shift right(/2) operation at each stage iii) Finally, take the complex conjugate of the result 4. Applications of FFT BGL/SNU
19
(2) Convolution ( Filtering ) - Operation reduction : h[n] x[n] y[n] N 2N N x[n] 0 N-1 n h[n] 0 N-1 n y[n 0 2N-2 n #computation(multi)? 1+2+…+N+N-1+…+1+0 =N 2
20
-Utilize FFT of 2N-point ~ h[n] 0 N-1 2N n x[n] 0 N-1 2N n y[n] 0 2N-2 2N n R 2N [n] 1 0 2N-1 n ~ ~ 2N-pt DFTs BGL/SNU
21
2N-pt FFT 2N-pt FFT 2N-pt IFFT x[n] h[n] X[k] H[k] Y[k] y[n] 2N # operation (multi) - operation reduction : BGL/SNU
22
(3) Correlation /Power Spectrum 2N-point DFTs # Operation : - Power spectrum P[k] = X[k] X * [k] BGL/SNU
23
$ Comparison of # computation 5121024 1 10 6 10 2 10 3 10 4 10 5 10 0.45k 1k 2k 5k 35k 16k 7.25k 3.3k 16k 62.5k 250k 1M Direct Computation FFT-based Convolution Correlation FFT N BGL/SNU
24
5. Fast Computation of DCT BGL/SNU
25
- Example: Lee’s Algorithm (1984, IEEE Trans, ASSP, Dec) 1D x[ 0] x[1] x[2] x[3] x[4] x[5] x[6] x[7] X [ 0] X[4] X[2] X[6] X[1] X[5] X[3] X[7] BGL/SNU
26
- Example: 2D DCT Algorithm (1991, N.I.Cho and S.U.Lee) BGL/SNU Separable Transform NxN 2D DCT = N 1-D DCT into row direction followed by N 1-D DCT into column direction. Totally 2N 1-D DCT (each N-point) are required.
27
Fast Algorithm reduces the number of 1-D DCTs into N. By using the trigonometric properties, 2D DCT is decomposed into 1-D DCTs.
28
Signal flow graph of 2-D DCT 8x8 DCT 4x4 DCT
29
6. Matrix Approach · Decimation-in-time BGL/SNU
30
31
· Decimation-in-frequency BGL/SNU
32
· General expression for N=2 case
33
· Extension to general N (Cooley/Tuckey) BGL/SNU
34
· # computations (complex) BGL/SNU
35
7. Prime Factor Algorithm (Thomas/Good) (1) Basics from Number Theory Euler’s Phi function Euler’s Theorem 6mod125,2)(,6,5)(.mod1then,1),(If )( )( N aNNaeg NaNa Chinese Remainder Theorem (CRT) N
36
Second Integer Representation (SIR) BGL/SNU
38
(2) Prime Factor Algorithm Set Then BGL/SNU
39
Therefore Note that the only difference is in the “twiddle factor” BGL/SNU
40
(3) Comparison Example 12-Point DFT (N=12, p=3, q=4)C/T : Cooley/Tuckey T/G : Thomas/Good · Transform · Index Mappings
41
· Diagram 4pt DFT 0 3 6 9 0 3 6 9 (0,0) (1,0) (2,0) (3,0) 4pt DFT 4 7 10 1 1 4 7 (0,1) (1,1) (2,1) (3,1) 4pt DFT 8 11 2 5 2 5 8 (0,2) (1,2) (2,2) (3,2) 3pt DFT ),( 01 kkX (0,0) (0,1) (0,2) 3pt DFT (1,0) (1,1) (1,2) 3pt DFT (2,0) (2,1) (2,2) 3pt DFT (3,0) (3,1) (3,2) 00 44 88 19 51 95 26 610 2 33 77 11 T/GC/T T/G BGL/SNU 001 ),(nkx (0,0) (0,1) 102 ),(kkx (0,2) (0,3) (1,0) (1,1) (1,2) (1,3) (2,2) (2,3) (2,0) (2,1)
42
- Radix-2 algorithms: algorithms in textbook : - Radix-4 algorithms : Radix-4 algorithm BGL/JWL/SNU
43
- Radix-4 butterfly BGL/JWL/SNU
44
- Radix-4 butterfly -j j 1 j -j BGL/JWL/SNU
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.