Download presentation
Presentation is loading. Please wait.
Published byDwain Russell Modified over 8 years ago
1
Heavy-Flavor Interactions in Medium Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College Station, TX USA 6 th Workshop of the APS Topical Group on Hadronic Physics Baltimore (MD), 08.-10.04.15
2
1.) Introduction: A “Calibrated” QCD Force Vacuum charm-/bottomonium spectroscopy well described Confinement ↔ linear part of potential non-perturbative treatment in medium lattice QCD, potential / T-matrix approach, AdS/CFT, … [Kaczmarek et al ‘03] V [½ GeV] r [½ fm]
3
1.2 Objectives with Heavy Flavor in URHICs Determine modifications of QCD force in medium + infer consequences for the many-body system exploit m Q >> QCD, T c, T(RHIC,LHC) Open heavy-flavor diffusion: “Brownian markers of QGP” - Scattering rates: widths, quasiparticles? (m Q T) - Thermalization: delayed by m Q /T → memory - Transport: diffusion coefficient D s (2πT) ~ η/s Quarkonia kinetics - Screening of confining (≥T c ?) + Coulomb (≥2T c ?) force - ϒ states: sequential melting - ψ states: (sequential?) regeneration
4
1.) Introduction 2.) Heavy-Quark Interactions in QGP 3.) Open Heavy-Flavor Transport 4.) Quarkonia: ψ Puzzle(s) 5.) Conclusions Outline
5
2.1 Free + Internal Energy from Lattice QCD U = ‹H int › non-trivial many-body correlations F 1 (r,T) = U 1 (r,T) – T S 1 (r,T) marked gradual “screening” F, U, S thermodynamic quantities Underlying ``bare” interaction? Free Energy Internal Energy
6
Lippmann-Schwinger equation In-Medium Q-Q T-Matrix: - 2.2 Thermodynamic T-Matrix in QGP thermal 2-particle propagator: selfenergy: rooted in vacuum spectroscopy; recovers pQCD at large q 2 in-medium potential V? QQ q,g = [Cabrera+RR ’06, Riek+RR ‘10]
7
2.2.2 Free Energy from T-Matrix Key ingredients: imaginary parts + their dependence heavy-quark selfenergies (from heavy-light T-matrix) [S.Liu+RR in progress ] Euclidean T-matrix in static limit Spectral Function Free Energy [S.Liu+RR ’15] [Beraudo et al ’08]
8
2.2.3. Free + Internal Energy from T-Matrix remnant of long-range “confining” force in QGP 1.2 T c 1.5 T c 2 T c U F V lattice data r [fm] field-theoretic potential ansatz: [Megias et al ’07]
9
1.) Introduction 2.) Heavy-Quark Interactions in QGP 3.) Open Heavy-Flavor Transport 4.) Quarkonia: ψ Puzzle(s) 5.) Conclusions Outline
10
3.1 Heavy-Light Interactions in QGP (pre-) resonances close to T c same interaction for transport + hadronization c-q - T-Matrix Thermal Relaxation Rate c [1/fm] p [GeV] c ≈ 3 fm/c close to T c at low p transition non-pert → pert. QCD
11
3.2 Charm Diffusion Coefficient in Matter shallow minimum near T c Quark-Hadron continuity? Hadronic Matter vs. QGP vs. Lattice QCD [He et al ’11, Riek+RR ’10, Ding et al ‘11, Gavai et al ‘11] AdS/QCD [Gubser ‘07] D s =T/m Q Q
12
| | 3.3 Heavy-Flavor Transport in URHICs no “discontinuities” in interaction diffusion toward T pc and hadronization same interaction (confining!) initial cond. (shadowing, Cronin), pre-equil. fields c-quark diffusion in QGP liquid c-quark hadronization D-meson diffusion in hadron liquid c D [fm/c] 0 0.5 5 10
13
5.) Charm Transport in Heavy-Ion Collisions R AA “bump” from radial flow D s meson (cs) enhanced from coalescence with strange quarks Coalescence + hadronic diffusion increase v 2 similar features at RHIC [M.He et al ’14]
14
1.) Introduction 2.) Heavy-Quark Interactions in QGP 3.) Open Heavy-Flavor Transport 4.) Quarkonia: ψ Puzzle(s) 5.) Conclusions Outline
15
4.) Quarkonium Transport in Heavy-Ion Collisions J/ D D - c - c [PBM+Stachel ’00,Thews et al ’01, Grandchamp+RR ‘01, Gorenstein et al ’02, Ko et al ’02, Andronic et al ‘03, Zhuang et al ’05, Ferreiro et al ‘11, …] J/ + g c + c + X ← → - Inelastic Reactions: detailed balance: Transport coefficients - chemical relaxation rate - equililbrium limit N eq ( B, m c *, c eq ) Phenomenology: - J/ , c, ’+c,b initial distributions [pp, pA] - medium evolution [AA: hydro,...] Rate Equation: Observables
16
4.2 J/ Predictions at LHC regeneration becomes dominant uncertainties in cc + shadowing [Zhao+RR ‘11 ] maximum at low p t corroborates regeneration
17
4.3.1 Time Evolution of Charmonia in the Fireball smaller binding → smaller T diss → forms later than J/ψ ! stronger fireball expansion for ψ → harder p t spectra (slope parameter T eff ~ T + m ┴ 2 ) [X.Du+RR ‘15 ] Time Evolution Momentum Spectra
18
4.3.2 Sequential Recombination + CMS Data ψ blast wave fills p t = 3-6 GeV region, primordial for p t > 6 GeV helps explain CMS double-ratio “puzzle” [X.Du+RR ‘15 ] ψ’ / J/ψ R AA Double Ratio
19
5.) Conclusions Extract heavy-quark potential in QGP from lat-QCD free energy: - Large imaginary parts - Remnants of confinement generate strong coupling “Critical” consequences for heavy-flavor diffusion: Continuity + minimum of transport coefficient through T pc Diffusion + hadronization from same interaction Sequential recombination of charmonia?!
20
2.2.4 Brueckner Theory of Heavy Flavor in QGP 2-body potential QQ T-matrix Qq T-matrix Q → Q 0-modes Quark selfenergy QQ evolution (rate equation) Q spectra + v 2 (Langevin) spectral fcts./ eucl. correlat. quark-no. susceptibility lattice data exp. data Input Process Output Test - - lattice-QCD free energy
21
4.2 Charmonia in d+Au Fireball construct fireball + evolve rate equat. → suppression from hot medium similar in spirit to comover approach formation time effects?! [X.Du+RR, in prep ] [Ferreiro ‘14 ] [Y.Liu, Ko et al ‘14 ]
22
4.) Charmonium: (3686) easily dissociated in hadronic matter: , ,... + →DD, → D med D med [Grandchamp +RR ‘02 ] hadronic dissociation at SPS important ingredient for transport models [Sorge et al ‘97, …] [PBM+Stachel ‘00]
23
3.6 (1S) and (2S) at LHC sensitive to color-screening + early evolution times clear preference for strong binding (U potential) similar results by possible problem in rapidity dependence (1S) → (2S) → [Grandchamp et al ’06, Emerick et al ‘11] Weak Binding Strong Binding [Strickland ‘12 ]
24
3.3 D-Meson Transport in Hadronic Matter consistent with: - unitarized HQET (pion gas) - recent works in HRG using similar methods effective D-h scattering amplitudes [He,Fries+RR ’11] D [fm -1 ] [Cabrera et al ‘11] hadron gas at ~T c : D ≈ 10fm/c D [fm -1 ] [Tolos+Torres-Ricon ’13, Ozvenchuk et al ‘14]
25
c from fixed cc number: interplay of m c * and constrain spectral shape by lattice-QCD correlators 3.1 Thermal Charmonium Properties mc*mc* BB (a) Equilibrium number: - q (b) Inelastic Width controlled by s (parameter)
26
3.3 Inclusive J/ at SPS + RHIC Fix two main parameters: s ~0.3, charm relax. c eq = 4(2) fm/c for U(F) vs. ~5(10) from T-matrix Strong Binding (U) Weak Binding (F) [Zhao+RR ‘10]
27
3.4 J/ Excitation Function: BES at RHIC [Grandchamp +RR ’02 ] suppression pattern varies little (expected from transport) quantitative pp + pA baseline critical to extract systematics PHENIX (forward y) STAR (central y)
28
3.5 J/ Predictions at LHC regeneration becomes dominant uncertainties in cc +shadowing [Zhao+RR ‘11 ] low p T maximum confirms regeneration too much high-p T suppression?
29
3.7 Summary of Phenomenology Quarkonium discoveries in URHICs: - increase of J/ R AA SPS, RHIC → LHC - low-p T enhancement - sizable v 2 - increasing suppression of ’ ( B ’ ~ B J/ ) Implications - T 0 SPS (~230) < T diss (J/ , ’) < T 0 RHIC (~350) < T 0 LHC (~550) ≤ T diss ( ) - confining force screened at RHIC+LHC - marked recombination of diffusing charm quarks at LHC Fair predictive power of theoretical modeling - based on description of SPS+RHIC with 2 main parameters
30
3.2.2 J/ at LHC: v 2 further increase at mid-y [He et al ’12 ]
31
3.1.2 J/ p T Spectra + Elliptic Flow at RHIC small v 2 limits regeneration, but does not exclude it (strong binding) shallow minimum at low p T high p T : formation time, b feeddown, Cronin
32
3.2.2 D-Meson Thermalization at LHC to be determined…
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.