Download presentation
Presentation is loading. Please wait.
Published byJoseph Black Modified over 8 years ago
1
1 January 18, 2010 Shape Replication through Self-Assembly and Rnase Enzymes Zachary AbelHarvard University Nadia BenbernouMassachusetts Institute of Technology Mirela DamianVillanova University Erik D. DemaineMassachusetts Institute of Technology Martin DemaineMassachusetts Institute of Technology Robin FlatlandSiena College Skott D. KominersHarvard University Robert SchwellerUniversity of Texas Pan American Read: Replicate:
2
2 Outline Basic Model RNA enzyme model Shape replication Precise yield shape replication Infinite yield shape replication
3
3 Tile Assembly Model (Rothemund, Winfree, Adleman) T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 Tile Set: Glue Function: Temperature: x ed cba
4
4 T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 d e x ed cba Tile Assembly Model (Rothemund, Winfree, Adleman)
5
5 T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 d e x ed cba Tile Assembly Model (Rothemund, Winfree, Adleman)
6
6 T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 d e x ed cba bc Tile Assembly Model (Rothemund, Winfree, Adleman)
7
7 T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 d e x ed cba bc Tile Assembly Model (Rothemund, Winfree, Adleman)
8
8 T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 d e x ed cba bc Tile Assembly Model (Rothemund, Winfree, Adleman)
9
9 T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 d e x ed cba bca Tile Assembly Model (Rothemund, Winfree, Adleman)
10
10 T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 d e x ed cba bca Tile Assembly Model (Rothemund, Winfree, Adleman)
11
11 T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 d e x ed cba bca Tile Assembly Model (Rothemund, Winfree, Adleman)
12
12 T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 d e x ed cba bca Tile Assembly Model (Rothemund, Winfree, Adleman)
13
13 T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 x ed cba abc d e Tile Assembly Model (Rothemund, Winfree, Adleman)
14
14 T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 x ed cba x abc d e Tile Assembly Model (Rothemund, Winfree, Adleman)
15
15 T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 abc d e x x ed cba Tile Assembly Model (Rothemund, Winfree, Adleman)
16
16 T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 x ed cba abc d e xx Tile Assembly Model (Rothemund, Winfree, Adleman)
17
17 T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 x ed cba abc d e xx x Tile Assembly Model (Rothemund, Winfree, Adleman)
18
18 T = G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 x ed cba abc d e xx xx (Basic)Tile Assembly Model (Rothemund, Winfree, Adleman)
19
19 Outline Basic Model RNA enzyme model Shape replication Precise yield shape replication Infinite yield shape replication
20
20 RNA enzyme Self-Assembly (suggested by Rothemund, Winfree 2000) RNA tile types DNA tile types RNA assembly model: Assembly occurs over a number of stages. At each stage you may: 1) Add a new collection of tile types - Allow for further growth - All added types have infinite count 2) Add an Rnase enzyme - Dissolve all RNA tile types - May break apart assemblies All tile types are of either DNA or RNA makeup:
21
21 RNA enzyme Self-Assembly Stage 1:
22
22 RNA enzyme Self-Assembly Stage 1:
23
23 RNA enzyme Self-Assembly Stage 1: Stage 2:
24
24 RNA enzyme Self-Assembly Stage 1: Stage 2:
25
25 RNA enzyme Self-Assembly Stage 1: Stage 2: Stage 3: Enzyme
26
26 RNA enzyme Self-Assembly Stage 1: Stage 2: Stage 3: Enzyme
27
27 RNA enzyme Self-Assembly Stage 1: Stage 2: Stage 3: Enzyme
28
28 RNA enzyme Self-Assembly Stage 1: Stage 2: Stage 3: Enzyme Stage 4:
29
29 RNA enzyme Self-Assembly Stage 1: Stage 2: Stage 3: Enzyme Stage 4:
30
30 RNA enzyme Self-Assembly Stage 1: Stage 2: Stage 3: Enzyme Stage 4:
31
31 RNA enzyme Self-Assembly Stage 1: Stage 2: Stage 3: Enzyme Stage 4:
32
32 RNA enzyme Self-Assembly Metrics for efficiency: Tile complexity: total number of distinct tile types used in the system. Stage complexity: total number of distinct stages used.
33
33 Outline Basic Model RNA enzyme model Shape replication Precise yield shape replication Infinite yield shape replication
34
Shape Replication Problem Design an assembly system (algorithm) that will replicate a large number of copies given a single copy of a pre-assembled input shape. Precise Yield: Replicate exactly n copies for a given n Infinite Yield: Replicate infinite copies -in practice, the number of copies should only be limited by the volume of particles available.
35
35 Outline Basic Model RNA enzyme model Shape replication Precise yield shape replication Infinite yield shape replication
36
Precise Yield: rectangles
37
aaaa a a a a a a aaaa a a a a a a
38
nnnn e e e e e e w w w w w w ssss
39
nnnn e e e e e e w w w w w w ssss n w xx y y
40
nnnn e e e e e e w w w w w w ssss n w
41
nnnn e e e e e e w w w w w w ssss n w n e s ws e
42
nnnn e e e e e e w w w w w w ssss n w n e s w s e
43
n nn n e e e e e e w w w w w w ssss a w a a a
44
nn e e w w ss Step 1: Coat shape with layer of RNA
45
Precise Yield: rectangles nn e e w w ss Step 2: Coat shape with layer of DNA Step 1: Coat shape with layer of RNA
46
Precise Yield: rectangles Step 2: Coat shape with layer of DNA. Step 3: Add enzyme. Step 1: Coat shape with layer of RNA.
47
Precise Yield: rectangles Step 2: Coat shape with layer of DNA. Step 3: Add enzyme. Step 1: Coat shape with layer of RNA.
48
Precise Yield: rectangles Step 2: Coat shape with layer of DNA. Step 3: Add enzyme. Step 4: Coat frame with layer of RNA. Step 1: Coat shape with layer of RNA.
49
Precise Yield: rectangles Step 2: Coat shape with layer of DNA. Step 3: Add enzyme. Step 4: Coat frame with layer of RNA. Step 1: Coat shape with layer of RNA.
50
Precise Yield: rectangles Step 2: Coat shape with layer of DNA. Step 3: Add enzyme. Step 4: Coat frame with layer of RNA. Step 5: Fill frame with DNA. Step 1: Coat shape with layer of RNA.
51
Precise Yield: rectangles Step 2: Coat shape with layer of DNA. Step 3: Add enzyme. Step 4: Coat frame with layer of RNA. Step 5: Fill frame with DNA. Step 1: Coat shape with layer of RNA.
52
Precise Yield: rectangles Step 2: Coat shape with layer of DNA. Step 3: Add enzyme. Step 4: Coat frame with layer of RNA. Step 5: Fill frame with DNA. Step 6: Add enzyme. Step 1: Coat shape with layer of RNA.
53
Precise Yield: rectangles Step 2: Coat shape with layer of DNA. Step 3: Add enzyme. Step 4: Coat frame with layer of RNA. Step 5: Fill frame with DNA. Step 6: Add enzyme. Step 1: Coat shape with layer of RNA.
54
Precise Yield: General Shapes
57
Precise Yield: rectangles
58
Tile typesO(1) StagesO(log n) Precise Yield: n copies Precise Yield: rectangles Tile typesO(log n) StagesO(1) Precise Yield: n copies
59
59 Outline Basic Model RNA enzyme model Shape replication Precise yield shape replication Infinite yield shape replication
60
Infinite Yield: Rectangles nnnn e e e e e e w w w w w w ssss
61
nnnn e e e e e e w w w w w w ssss s w a
62
a s b s b s a b ss a s Stair step tiles: x x
63
Infinite Yield: Rectangles a s b s b s a b ss Stair step tiles: x x b x
64
Infinite Yield: Rectangles a s b s b s a b ss Stair step tiles: x x a b
65
Infinite Yield: Rectangles a s b s b s a b s s Stair step tiles: x x a b
66
Infinite Yield: Rectangles a s b s b s a b s Stair step tiles: x x b a b
67
Infinite Yield: Rectangles a s b s b s a b s Stair step tiles: x x b a b
68
Infinite Yield: Rectangles a s b s b s a b s Stair step tiles: x x b a b
69
Infinite Yield: Rectangles a s b s b s a b Stair step tiles: x x b b b a
70
Infinite Yield: Rectangles a s b s b s a b Stair step tiles: x x
71
Infinite Yield: Rectangles a s b s b s a b Stair step tiles: x x
72
Infinite Yield: Rectangles a s b s b s a b Stair step tiles: x x …
73
Infinite Yield: Rectangles Tile typesO(1) StagesO(1) Infinite Yield: Rectangles
74
Infinite Yield: General Shapes
75
Step 1: Coat with RNA
76
Infinite Yield: General Shapes Step 2: Create rectangular DNA encasing
77
Infinite Yield: Binary counter tool cccccccccccccccccccccccc
78
1 ccccccccccccccccccccccc m 0 01 00 11 nn nn 01 10 01 cc nc 1 m m x x Binary counter tiles: c 0 1 mm n
79
1 Infinite Yield: Binary counter tool 1 cccccccccccccccccccccc 0 0 m 0 01 00 11 nn nn 01 10 01 cc nc 1 m m x x Binary counter tiles: c 0 1 mm n
80
1 Infinite Yield: Binary counter tool 1 ccccccccccccccccccccc 0 m 1 1 n 0 01 00 11 nn nn 01 10 01 cc nc 1 m m x x Binary counter tiles: c 0 1 mm n
81
1 Infinite Yield: Binary counter tool 1 ccccccccccccccccccccc 0 01 00 11 nn nn 01 10 01 cc nc 1 m m x x Binary counter tiles: c 0 0 m 1 1 1 mm n 1
82
1 Infinite Yield: Binary counter tool 1 cccccccccccccccccccc 0 01 00 11 nn nn 01 10 01 cc nc 1 m m x x Binary counter tiles: c 0 0 1 1 mm n 1 0 0 c m
83
1 Infinite Yield: Binary counter tool 1 cccccccccccccccccccc 0 01 00 11 nn nn 01 10 01 cc nc 1 m m x x Binary counter tiles: c 0 0 m 1 1 mm n 1 0 0 1 0 0
84
1 Infinite Yield: Binary counter tool 1 ccccccccccccccccccc 0 01 00 11 nn nn 01 10 01 cc nc 1 m m x x Binary counter tiles: c 0 0 m 1 1 mm n 1 0 1 0 0 1 1 n
85
1 Infinite Yield: Binary counter tool 1 ccccccccccccccccccc 0 01 00 11 nn nn 01 10 01 cc nc 1 m m x x Binary counter tiles: c 0 0 m 1 1 mm n 1 0 1 0 1 1 n 0 0
86
1 Infinite Yield: Binary counter tool 1 ccccccccccccccccccc 0 01 00 11 nn nn 01 10 01 cc nc 1 m m x x Binary counter tiles: c 0 0 m 1 1 mm n 1 0 1 0 1 1 0 0 1
87
1 Infinite Yield: Binary counter tool 1 0 01 00 11 nn nn 01 10 01 cc nc 1 m m x x Binary counter tiles: c 0 0 1 1 mm n 1 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 1 0 1 0 1 1111 0 1 1 1 1 1 11 0 0 0 1 01 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0000 1111 0 1 1 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1
88
Infinite Yield: General Shapes … …
89
1111000000 111111 11111 11111000000 111111 000000 0000 1111 1111 … …
90
1111000000 111111 11111 11111000000 111111 000000 0000 1111 1111 11111 11111 0000011111 11111 11111 11111 1 1 111111111110000 1111 0000 0000
91
1111000000 111111 11111 11111000000 111111 000000 0000 1111 1111 11111 11111 0000011111 11111 11111 11111 1 1 111111111110000 1111 0000 0000 00000000000000000000 0000000000 0 0 000 0000 000000000000000000000 111100000 11111 11111 11111000000 111111 000000 0000 1111 1111 00000000 000000000 0 0 000 0000 0000000000000000 0 1 1 0 000000 111111 000000 000000 00 11 00 00 1111 0000 0000 0000 1 0 0 0 Step 3: Label each face with unique binary code
92
Infinite Yield: General Shapes 1111000000 111111 11111 11111000000 111111 000000 0000 1111 1111 11111 11111 0000011111 11111 11111 11111 1 1 111111111110000 1111 0000 0000 00000000000000000000 0000000000 0 0 000 0000 000000000000000000000 111100000 11111 11111 11111000000 111111 000000 0000 1111 1111 00000000 000000000 0 0 000 0000 0000000000000000 0 1 1 0 000000 111111 000000 000000 00 11 00 00 1111 0000 0000 0000 1 0 0 0 Step 4: Enzyme.
93
Infinite Yield: General Shapes 0000 1111 1111 0000 … 0000 1111 1111 0000 0000 1111 1111 0000 0000 1111 1111 0000 0000 1111 1111 0000 Step 5: Infinitely replicate all labeled rectangles
94
Infinite Yield: General Shapes 1111000000 111111 11111 11111000000 111111 000000 0000 1111 1111 11111 11111 0000011111 11111 11111 11111 1 1 111111111110000 1111 0000 0000 00000000000000000000 0000000000 0 0 000 0000 000000000000000000000 111100000 11111 11111 11111000000 111111 000000 0000 1111 1111 00000000 000000000 0 0 000 0000 0000000000000000 0 1 1 0 000000 111111 000000 000000 00 11 00 00 1111 0000 0000 0000 1 0 0 0
95
Reassembly? 0000 1111 1111 0000 000000 111111 000000 000000
96
Infinite Yield: General Shapes Reassembly? 000 1 111 1 111 0 000 0 00000 0 11111 1 00000 1 000 0 00
97
Infinite Yield: General Shapes Reassembly? 0001 1111 1110 0000 000000 111111 000001 000000
98
Infinite Yield: General Shapes Reassembly? 0001 1111 1110 0000 000000 111111 000001 000000 0 1 0 1 01 10 00 11 1 0 1 1
99
Infinite Yield: General Shapes 1111000000 111111 11111 11111000000 111111 000000 0000 1111 1111 11111 11111 0000011111 11111 11111 11111 1 1 111111111110000 1111 0000 0000 00000000000000000000 0000000000 0 0 000 0000 000000000000000000000 111100000 11111 11111 11111000000 111111 000000 0000 1111 1111 00000000 000000000 0 0 000 0000 0000000000000000 0 1 1 0 000000 111111 000000 000000 00 11 00 00 1111 0000 0000 0000 1 0 0 0 Step 6: Reassemble, fill in frame, break out copies with enzyme.
100
Infinite Yield: General Shapes Tile typesO(1) StagesO(1) Infinite Yield: Vertically convex
101
Infinite Yield: Non-vertically convex shapes Grow counter along surface of shape
102
0001 00100010 0011 01000100 0101 01100110 0111 10001000 1001 10101010 Grow counter along surface of shape Start end Infinite Yield: Non-vertically convex shapes
103
0001 00100010 0011 01000100 0101 01100110 0111 10001000 1001 10101010 Grow counter along surface of shape Break apart with enzyme Infinite Yield: Non-vertically convex shapes
104
0001 00100010 0011 01000100 0101 01100110 0111 10001000 1001 10101010 Grow counter along surface of shape Break apart with enzyme Replicate Infinite Yield: Non-vertically convex shapes
105
0001 00100010 0011 01000100 0101 01100110 0111 10001000 1001 10101010 Grow counter along surface of shape Break apart with enzyme Replicate Reassemble Infinite Yield: Non-vertically convex shapes
106
0001 00100010 0011 01000100 0101 01100110 0111 10001000 1001 10101010 Grow counter along surface of shape Break apart with enzyme Replicate Reassemble Infinite Yield: Non-vertically convex shapes
107
107 Tile typesO(1) StagesO(1) Infinite Yield: Infinite Yield: General Shapes
108
Future Work Replicate and improve -Hybrid algorithms for replication and modification Extension to 3D -Planarity/spacial constraint Replication of internal pattern Staged enzyme model for assembly from scratch - Seems to be very powerful for this Temperature changes to perform replication
109
109 January 18, 2010 Thank you. Questions? Zachary AbelHarvard University Nadia BenbernouMassachusetts Institute of Technology Mirela DamianVillanova University Erik D. DemaineMassachusetts Institute of Technology Martin DemaineMassachusetts Institute of Technology Robin FlatlandSiena College Skott D. KominersHarvard University Robert SchwellerUniversity of Texas Pan American Read: Replicate:
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.