Download presentation
Presentation is loading. Please wait.
Published byStephany Carson Modified over 8 years ago
1
Penn ESE370 Fall2010 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 31: November 22, 2010 Inductive Noise
2
Today Inductive Responses Calculating L Where do inductances show up Impact of inductance on digital circuits How address Penn ESE370 Fall2010 -- DeHon 2
3
Response What happens here? Penn ESE370 Fall2010 -- DeHon 3
4
LC Response Penn ESE370 Fall2010 -- DeHon 4 V2V2
5
LC Response Penn ESE370 Fall2010 -- DeHon 5
6
LC Response Penn ESE370 Fall2010 -- DeHon 6
7
LC Response Penn ESE370 Fall2010 -- DeHon 7
8
LC Response Penn ESE370 Fall2010 -- DeHon 8
9
LC Response Penn ESE370 Fall2010 -- DeHon 9
10
LC Response Penn ESE370 Fall2010 -- DeHon 10
11
LC Response Penn ESE370 Fall2010 -- DeHon 11
12
Response? Penn ESE370 Fall2010 -- DeHon 12
13
RLC Response Penn ESE370 Fall2010 -- DeHon 13 V2V2
14
RLC Response Penn ESE370 Fall2010 -- DeHon 14
15
RLC Response Penn ESE370 Fall2010 -- DeHon 15
16
Solving for w Penn ESE370 Fall2010 -- DeHon 16
17
RLC Penn ESE370 Fall2010 -- DeHon 17
18
RLC Penn ESE370 Fall2010 -- DeHon 18
19
RLC For Oscillation Decay Penn ESE370 Fall2010 -- DeHon 19
20
RLC Response (R=100) Penn ESE370 Fall2010 -- DeHon 20
21
When Oscillate Penn ESE370 Fall2010 -- DeHon 21
22
RLC Response Penn ESE370 Fall2010 -- DeHon 22
23
Inductance of Wire Penn ESE370 Fall2010 -- DeHon 23
24
Lwire Penn ESE370 Fall2010 -- DeHon 24 C and L per unit length
25
Chip Inductance C wire = 0.16 pF for the 1mm) C wire = 0.16nF/m Permeability 0 ≈ Si02 =12.6×10 -7 H/m Permitivity ox =3.5×10 -11 F/m Penn ESE370 Fall2010 -- DeHon 25
26
On Chip C wire = 0.16 pF for the 1mm) C wire = 0.16nF/m Permeability 0 ≈ Si02 =12.6×10 -7 H/m Permitivity ox =3.5×10 -11 F/m pH (for 1 mm) Penn ESE370 Fall2010 -- DeHon 26
27
Comparisons 5mil trace on PCB –About 2.7nH/cm –http://www.pcb123.com/help/calculators/microstrip.html Protoboard wires (0.6mm diameter) –About 7nH/cm –http://www.consultrsr.com/resources/eis/induct5.htm On chip wire –0.28nH/mm = 2.8nH/cm Penn ESE370 Fall2010 -- DeHon 27
28
Inductors Bond pads Chip leads Long wire runs Cables Penn ESE370 Fall2010 -- DeHon 28 Src: http://en.wikipedia.org/wiki/File:Wirebonding2.svg
29
Where Arise Penn ESE370 Fall2010 -- DeHon 29
30
Signal Path Penn ESE370 Fall2010 -- DeHon 30
31
Power Ground Penn ESE370 Fall2010 -- DeHon 31
32
Estimate R eq, C eq for gates in parallel –R 0 = 25K –C 0 = 0.01 fF say 10C 0 =0.1fF for typical load 250 gates switching at clock R eq = 100 C eq =25fF Assume L=1nH Penn ESE370 Fall2010 -- DeHon 32
33
Power Ground Penn ESE370 Fall2010 -- DeHon 33
34
RLC Response Penn ESE370 Fall2010 -- DeHon 34
35
Today’s Chips How many gates? Penn ESE370 Fall2010 -- DeHon 35
36
Multiple Power/Ground Pins Use many power/ground pins How many pins on a package? Divide switching gates by pins –To get effective load on each pin Penn ESE370 Fall2010 -- DeHon 36
37
How Improve Penn ESE370 Fall2010 -- DeHon 37
38
Minimize the L Make wires short Use power and ground planes Penn ESE370 Fall2010 -- DeHon 38
39
Add Good C’s Bypass Capacitors –On board –On chip Penn ESE370 Fall2010 -- DeHon 39
40
With Bypass Penn ESE370 Fall2010 -- DeHon 40
41
Minimize Current Draw More Power/Ground Pins Slower rise/fall times Spread out switching Penn ESE370 Fall2010 -- DeHon 41
42
Admin Wednesday –Homework due –Lecture Friday holiday Lecture on Monday Penn ESE370 Fall2010 -- DeHon 42
43
Idea Long wires are inductive –Avoid them –Especially on power supplies Bypass capacitors help Penn ESE370 Fall2010 -- DeHon 43
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.