Download presentation
Presentation is loading. Please wait.
Published byDominick Preston Modified over 8 years ago
2
1
3
2 Linear Programming Chapter 3
4
3 Chapter Objectives –Requirements for a linear programming model. –Graphical representation of linear models. –Linear programming results: Unique optimal solution Alternate optimal solutions Unbounded models Infeasible models –Extreme point principle.
5
4 Chapter Objectives - continued –Sensitivity analysis concepts: Reduced costs Range of optimality Shadow prices Range of feasibility Complementary slackness Added constraints / variables –Computer solution of linear programming models WINQSB EXCEL LINDO
6
5 A Linear Programming model seeks to maximize or minimize a linear function, subject to a set of linear constraints. The linear model consists of the following components: – A set of decision variables. – An objective function. – A set of constraints. 3.1 Introduction to Linear Programming
7
6 The Importance of Linear Programming –Many problems lend themselves to linear programming formulations. – Many problems can be approximated by linear models. –The output generated by linear programs provides useful “what-if” information.
8
7 3.2 THE GALAXY INDUSTRY PRODUCTION PROBLEM - A Prototype Example Galaxy manufactures two toy models: –Space Ray. –Zapper. Resources are limited to –1200 pounds of special plastic. –40 hours of production time per week.
9
8 Marketing requirement –Total production cannot exceed 800 dozens. –Number of dozens of Space Rays cannot exceed number of dozens of Zappers by more than 450. Technological input –Space Rays requires 2 pounds of plastic and 3 minutes of labor per dozen. – Zappers requires 1 pound of plastic and 4 minutes of labor per dozen.
10
9 Current production plan calls for: –Producing as much as possible of the more profitable product, Space Ray ($8 profit per dozen). –Use resources left over to produce Zappers ($5 profit per dozen). The current production plan consists of: Space Rays = 550 dozens Zapper = 100 dozens Profit = 4900 dollars per week
11
10 Management is seeking a production schedule that will increase the company’s profit.
12
11 A Linear Programming Model can provide an intelligent can provide an intelligent solution to this problem solution to this problem
13
12 SOLUTION : Decisions variables: –X1 = Production level of Space Rays (in dozens per week). –X2 = Production level of Zappers (in dozens per week). Objective Function: – Weekly profit, to be maximized
14
13 The Linear Programming Model Max 8X1 + 5X2 (Weekly profit) subject to 2X1 + 1X2 < = 1200 (Plastic) 3X1 + 4X2 < = 2400 (Production Time) X1 + X2 < = 800 (Total production) X1 - X2 < = 450 (Mix) X j > = 0, j = 1,2 (Nonnegativity)
15
14 3.4 The Set of Feasible Solutions for Linear Programs The set of all points that satisfy all the constraints of the model is called a FEASIBLE REGION
16
15 Using a graphical presentation we can represent all the constraints, the objective function, and the three types of feasible points.
17
16 1200 600 The Plastic constraint Feasible The plastic constraint: 2X1+X2<=1200 X2 Infeasible Production Time 3X1+4X2<=2400 Total production constraint: X1+X2<=800 600 800 Production mix constraint: X1-X2<=450 There are three types of feasible points Interior points. Boundary points. Extreme points. X1
18
17 3.5 Solving Graphically for an Optimal Solution
19
18 Recall the feasible Region 600 800 1200 400600800 X2 X1 We now demonstrate the search for an optimal solution Start at some arbitrary profit, say profit = $2,000... Profit = $ 000 2, Then increase the profit, if possible... 3, 4,...and continue until it becomes infeasible Profit =$5040
20
19 600 800 1200 400600800 X2 X1 Let’s take a closer look at the optimal point Feasible region Feasible region Infeasible
21
20 Summary of the optimal solution Space Rays = 480 dozens Zappers = 240 dozens Profit = $5040 –This solution utilizes all the plastic and all the production hours. –Total production is only 720 (not 800). –Space Rays production exceeds Zapper by only 240 dozens (not 450).
22
21 Extreme points and optimal solutions –If a linear programming problem has an optimal solution, an extreme point is optimal. Multiple optimal solutions –For multiple optimal solutions to exist, the objective function must be parallel to a part of the feasible region. –Any weighted average of optimal solutions is also an optimal solution.
23
22 3.6 The Role of Sensitivity Analysis of the Optimal Solution Is the optimal solution sensitive to changes in input parameters? Possible reasons for asking this question: –Parameter values used were only best estimates. –Dynamic environment may cause changes. –“What-if” analysis may provide economical and operational information.
24
23 Range of Optimality –The optimal solution will remain unchanged as long as An objective function coefficient lies within its range of optimality There are no changes in any other input parameters. –The value of the objective function will change if the coefficient multiplies a variable whose value is nonzero. 3.7 Sensitivity Analysis of Objective Function Coefficients.
25
24 600 800 1200 400600800 X2 X1 The effects of changes in an objective function coefficient on the optimal solution Max 8x1 + 5x2 Max 4x1 + 5x2 Max 3.75x1 + 5x2 Max 2x1 + 5x2
26
25 600 800 1200 400600800 X2 X1 The effects of changes in an objective function coefficients on the optimal solution Max8x1 + 5x2 Max 3.75x1 + 5x2 Max8x1 + 5x2 Max 3.75 x1 + 5x2 Max 10 x1 + 5x2 3.75 10 Range of optimality
27
26 Multiple changes –The range of optimality is valid only when a single objective function coefficients changes. –When more than one variable changes we turn to the 100% rule.
28
27 The 100% Rule 1. For each increase (decrease) in an objective function coefficient, calculate (and express as a percentage) the ratio of the change in the coefficient to the maximum possible increase (decrease) as determined by the limits of the range of optimality. 2. Sum all these percent changes. If the total is less than 100 percent, the optimal solution will not change. If this total is greater than or equal to 100%, the optimal solution may change. The 100% Rule 1. For each increase (decrease) in an objective function coefficient, calculate (and express as a percentage) the ratio of the change in the coefficient to the maximum possible increase (decrease) as determined by the limits of the range of optimality. 2. Sum all these percent changes. If the total is less than 100 percent, the optimal solution will not change. If this total is greater than or equal to 100%, the optimal solution may change.
29
28 Reduced costs The reduced cost for a variable at its lower bound (usually zero) yields: The amount the profit coefficient must change before the variable can take on a value above its lower bound. The amount the optimal profit will change per unit increase in the variable from its lower bound. Complementary slackness At the optimal solution, either a variable is at its lower bound or the reduced cost is 0.
30
29 3.8 Sensitivity Analysis of Right-Hand Side Values Any change in a right hand side of a binding constraint will change the optimal solution. Any change in a right-hand side of a nonbinding constraint that is less than its slack or surplus, will cause no change in the optimal solution.
31
30 In sensitivity analysis of right-hand sides of constraints we are interested in the following questions: –Keeping all other factors the same, how much would the optimal value of the objective function (for example, the profit) change if the right-hand side of a constraint changed by one unit? –For how many additional or fewer units this per unit change be valid?
32
31 1200 600 X2 The Plastic constraint Feasible X1 600 800 Production time constraint Maximum profit = 5040 2x1 + 1x2 <=1200 The new Plastic constraint 2x1 + 1x2 <=1350 Production mix constraint Infeasible extreme points
33
32 Correct Interpretation of shadow prices – Sunk costs: The shadow price is the value of an extra unit of the resource, since the cost of the resource is not included in the calculation of the objective function coefficient. – Included costs: The shadow price is the premium value above the existing unit value for the resource, since the cost of the resource is included in the calculation of the objective function coefficient.
34
33 Range of feasibility –The set of right - hand side values for which same set of constraints determines the optimal point. –Within the range of feasibility, shadow prices remain constant; however, the optimal solution will change.
35
34 3.9 Other Post Optimality Changes Addition of a constraint. Deletion of a constraint. Addition of a variable. Deletion of a variable. Changes in the left - hand side coefficients.
36
35 3.10 Models Without Optimal Solutions Infeasibility : Occurs when a model has no feasible point. Unboundness: Occurs when the objective can become infinitely large.
37
36 Infeasibility No point, simultaneously, lies both above line and below lines and. 1 2 3 1 23
38
37 Unbounded solution The feasible region Maximize the Objective Function
39
38 3.11 Navy Sea Ration A cost minimization diet problem – – Mix two sea ration products: Texfoods, Calration. – – Minimize the total cost of the mix. – – Meet the minimum requirements of Vitamin A, Vitamin D, and Iron.
40
39 Decision variables –X1 (X2) -- The number of two-ounce portions of Texfoods (Calration) product used in a serving. The Model Minimize 0.60X1 + 0.50X2 Subject to 20X1 + 50X2 100 25X1 + 25X2 100 Vitamin D 50X1 + 10X2 100 Iron X1, X2 0 Cost per 2 oz. % Vitamin A provided per 2 oz. % required
41
40 The Graphical solution 5 4 2 245 Feasible Region Vitamin “D” constraint Vitamin “A” constraint The Iron constraint
42
41 Summary of the optimal solution –Texfood product = 1.5 portions (= 3 ounces) Calration product = 2.5 portions (= 5 ounces) –Cost =$ 2.15 per serving. –The minimum requirement for Vitamin D and iron are met with no surplus. –The mixture provides 155% of the requirement for Vitamine A.
43
42 Linear programming software packages solve large linear models. Most of the software packages use the algebraic technique called the Simplex algorithm. The input to any package includes: –The objective function criterion (Max or Min). –The type of each constraint:. –The actual coefficients for the problem. 3.12 Computer Solution of Linear Programs With Any Number of Decision Variables
44
43 The typical output generated from linear programming software includes: –The optimal values of the objective function. –The optimal values of decision variables. –Reduced cost for objective function coefficients. –Ranges of optimality for objective function coefficients. –The amount of slack or surplus on each constraint. –Shadow (or dual) prices for the constraints. –Ranges of feasibility for right-hand side values.
45
44 WINQSB Input Data for the Galaxy Industries Problem Variables are restricted to >= 0 No upper bound Click to solve Variable and constraint name can be changed here
46
45
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.