Download presentation
Presentation is loading. Please wait.
Published byNorah Joseph Modified over 8 years ago
1
Queuing Theory
2
Model Customers arrive randomly in accordance with some arrival time distribution. One server services customers in order of arrival. The service time is random following some service time distribution.
3
Model Ntcustomersinsystematt()# avgarrivalrate N (t) t a t. lim
4
Model Ntcustomersinsystematt()# avgarrivalrate N (t) t a t. lim s avgservicerate .
5
Model Measures of Performance
6
Model Measures of Performance L=avg. # customers in system L q = avg. # customers in queue W = avg. waiting time in the system W q = avg. waiting time in the queue
7
Model Little’s Formula LW LW qq WW q 1
8
Model Steady State Ntcustomersinsystematt()# Plongrunprobabilitythatthere arencustomersinsystem n PNtn t lim{()}
9
M/M/1 Queue M/M/1 Queue assumes exponential interarrival times and exponential service times Ae i A i Se i S i
10
M/M/1 Queue M/M/1 Queue assumes exponential interarrival times and exponential service times Ae i A i Se i S i Exponential Review Expectations Memoryless Property Inverse Functions
11
M/M/1 Queue Relation to Poisson ifXtarrivals int()#(,] 0PXtPfirstarrivalt Pxt e t {()}{} {} 0
12
M/M/1 Queue Relation to Poisson PXtPfirstarrivalt Pxt e t {()}{} {} 0 PXtn te n nt {()} () ! miracle 37
13
M/M/1 Queue Inverse Function
14
M/M/1 Queue Inverse Function 2.032 1.951 1.349.795.539.347
15
M/M/1 Queue 2.032 1.951 1.349.795.539.347 0.305 0.074 0.035 0.520 1.535 0.159
16
M/M/1 Queue 2.032 1.951 1.349.795.539.347 0.305 0.074 0.035 0.520 1.535 0.159
17
M/M/1 Queue.347
18
M/M/1 Queue.347
19
M/M/1 Queue.539.347 0.305
20
M/M/1 Queue.5390.652
21
M/M/1 Queue.539 0.074 0.652
22
M/M/1 Queue 0.726
23
M/M/1 Queue.795 0.035 0.726
24
M/M/1 Queue 0..830
25
M/M/1 Queue 1.349 0.520 0.830
26
M/M/1 Queue 2.032 1.951 1.349.795.539.347 0.305 0.074 0.035 0.520 1.535 0.159
27
M/M/1 Event Calendar
28
M/M/1 Performance Measures
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.