Presentation is loading. Please wait.

Presentation is loading. Please wait.

1)The recipe of (OB) star formation: infall, outflow, rotation  the role of accretion disks 2)OB star formation: observational problems 3)The search for.

Similar presentations


Presentation on theme: "1)The recipe of (OB) star formation: infall, outflow, rotation  the role of accretion disks 2)OB star formation: observational problems 3)The search for."— Presentation transcript:

1 1)The recipe of (OB) star formation: infall, outflow, rotation  the role of accretion disks 2)OB star formation: observational problems 3)The search for disks: tracing rotation and infall 4)Results: disks in B stars; for O stars ALMA is needed Probing high-mass star formation through different molecules Riccardo Cesaroni INAF - Osservatorio Astrofisico di Arcetri High-mass  >8 M O  >10 3 L O  O-B star

2 The recipe of (OB) star formation: infall, outflow, rotation Infall of circumstellar material onto protostar Two relevant timescales: accretion: t acc = M star /(dM/dt) acc contraction: t KH = GM star /R star L star M star > 6-10 M O  t acc > t KH (Palla & Stahler 1993) High-mass stars reach ZAMS still accreting! Spherical symmetry  P radiation > P ram   stars > 6-10 M O should not form!??

3 Rotation and outflow may be the solution (Yorke & Sonnhalter, Kruhmolz et al.): Rotation+ang.mom.conserv.  Disk   focuses accretion   boosts ram pressure Outflow  channels stellar photons   lowers radiation pressure  Detection of accretion disks is crucial to understand O-B star formation

4 High-mass star observations Problems:  IMF  high-mass stars are rare  large distance: >450 pc  a few kpc ALMA sensitivity!  formation in clusters  confusion ALMA resolution!  rapid evolution: t acc =50 M O /10 -3 M O yr -1 =5 10 4 yr  parental environment profoundly altered Advantage:  very luminous (cont. & line) and rich (molecules)! ALMA spectral coverage!

5 Clump UC HII HMC (CH 3 CN, HCOOCH 3, NH 3, HNCO, C 2 H 5 CN, etc. …)

6 The search for disks: where 0.5 pc outflow disk

7 HMC LINE TRACER PROsCONTRAs Emission e.g. CH 3 CN, CH 3 OH, HCO + Kinematics and geometry of outflow (expansion) and disk (rotation) Limited angular resolution and sensitivity  ALMA needed Absorption e.g. NH 3 Excellent tracers of infall Bright, embedded continuum source needed  cm, submm (ALMA)? Maser e.g. H 2 O, CH 3 OH Very high angular resolution (1 mas); 3D velocity field Unclear geometry & kinematics The search for disks: what

8 Emission line from rotating disk

9 HMC LINE TRACER PROsCONTRAs Emission e.g. CH 3 CN, CH 3 OH, HCO + Kinematics and geometry of outflow and disk Limited angular resolution and sensitivity  ALMA needed Absorption e.g. NH 3 Excellent tracers of infall Bright, embedded continuum source needed  cm, submm (ALMA)? Maser e.g. H 2 O, CH 3 OH Very high angular resolution (1 mas); 3D velocity field Unclear geometry & kinematics

10 Absorption line from infalling envelope

11 HMC LINE TRACER PROsCONTRAs Emission e.g. CH 3 CN, CH 3 OH, HCO + Kinematics and geometry of outflow and disk Limited angular resolution and sensitivity  ALMA needed Absorption e.g. NH 3 Excellent tracers of infall Bright, embedded continuum source needed  cm, submm (ALMA)? Maser e.g. H 2 O, CH 3 OH Very high angular resolution (1 mas); 3D velocity field Global picture unclear All line tracers must be used!

12 L * (L O ) M dis k (M O ) D disk (AU) M * (M O ) Spec. Type IRAS2012610 4 416007B0.5 G24.78 A15 10 4 130500020O9.5 Results of disk search in B and late-O (proto)stars: 2 examples

13 IRAS 20126+4104 Cesaroni et al. Hofner et al. Moscadelli et al. Keplerian rotation: M * =7 M O Moscadelli et al. (2005)

14 Furuya et al. (2002) Beltran et al. (2004) Beltran et al. (2005)

15 Furuya et al. (2002) Beltran et al. (2004) Beltran et al. (2005)

16 Furuya et al. (2002) Beltran et al. (2004) Beltran et al. (2005) UC HII + dust O9.5 (20 M O ) + 130 M O Keplerian rotation around 20 M O star? ALMA needed!

17 Beltran et al. (2004,2005) Goddi et al. (in prep.) M dyn = 19 M O M dyn = 55 M O = M star +M gas CH 3 OH masers

18 outflow axis absorption UC HII

19 outflow axis infall and rotation! (dM/dt) infall > (dM/dt) HIIquench but HII exists  infall in disk!

20 Goddi et al. in prep. H 2 O maser proper motions accretion is finished!?? ALMA needed

21 Conclusions Robust evidence of disks in B (proto)stars and perhaps in late O (proto)stars  star formation by accretion as in low-mass stars No disk found yet in early O (proto)stars  perhaps observational bias? perhaps other star formation mechanisms possible? Only ALMA will tell:  High sensitivity & resolution  large distances  Sub-mm lines  high-T tracers  100 AU region  Wide bandwidth  outflow, infall, and rotation tracers simultaneously

22

23 outflow axis infall and rotation! (dM/dt) infall > (dM/dt) HIIquench but HII exists  infall in disk!

24 Furuya et al. (2002) Beltran et al. (2004) Beltran et al. (2005)

25 Results of disk search Two types of objects found: Disks in B stars M < 10 M O R ~ 1000 AU L ~ 10 4 L O (dM/dt) star ~ 10 -4 M O /yr t rot ~ 10 4 yr t acc ~ M/(dM/dt) star ~ 10 5 yr  t acc >> t rot  equilibrium, circumstellar structures Toroids in O stars M > 100 M O R ~ 10000 AU L >> 10 4 L O (dM/dt) star > 10 -3 M O /yr t rot ~ 10 5 yr t acc ~ M/(dM/dt) star ~ 10 4 yr  t acc << t rot  non-equilibrium, circum- cluster structures

26 Observational bias? For M disk = M star /2, a Keplerian disk in a 50 M O star can be detected up to:  continuum sensitivity: d < 1.7 [M star (M O )] 0.5 ~ 12 kpc  line sensitivity: d < 6.2 M star (M O ) sin 2 i/W 2 (km/s) ~ 8 kpc  spectral + angular resolution: d < 14 M star (M O ) sin 2 i/[D(’’)W 2 (km/s)] ~ 19 kpc  disks in all O stars should be detectable up to the galactic center The elusive disks in early O (proto)stars

27 Caveats!!! One should consider also: rarity of O stars  ALMA sensitivity confusion with envelope  ALMA resolution Chemistry  ALMA spectral coverage confusion with outflow/infall  ALMA resol. non-keplerian rotation disk flaring inclination angle …

28 outflow axis infall and rotation! (dM/dt) infall > (dM/dt) HIIquench but HII exists  infall in disk!

29 L star = 10 3 -10 5 L O   T dust = 65 K (L star /10 5 L O ) 0.2 (R/0.1pc) 0.4  T dust > 100 K for R < 0.1 pc  Grain mantles evaporated  chemical enrichment of gas phase: hot cores  wide choice of molecular probes: CH 3 OH, CH 3 CN, HCOOCH 3, etc. … Jets/outflows   shocks: H 2 O, SiO, HCO+, etc. …

30 Clump UC HII Core HMC

31 IRAS 20126+4104 Edris et al. (2005) Sridharan et al. (2005) disk NIR & OH masers

32 G192.16-3.82 Shepherd & Kurtz (1999) CO outflow 2.6mm cont. disk

33 G192.16-3.82 Shepherd & Kurtz (1999) Shepherd et al. (2001) 3.6cm cont. & H 2 O masers

34 Simon et al. (2000): TTau stars Velocity maps (CO J=2  1)

35 Cep A HW2 Torrelles et al. (1998) … but see Comito & Schilke for a different interpretation Patel et al. (2005)

36 IRAS 18089-1732 Beuther et al. (2004, 2005)

37 Gibb et al. (2002) Olmi et al. (2003) Olmi et al. (1996) Furuya et al. (2002) Beltran et al. (2004)

38 Gibb et al. (2002) Olmi et al. (2003) Beltran et al. (2005) CH 3 CN(12-11)

39 Disks & Toroids L (L O ) M disk (M O ) D disk (AU) M * (M O ) IRAS2012610 4 416007 G192.163 10 3 1510006-10 M17?>1102000015-20 NGC7538S10 4 100-4003000040 G24.78 (3)7 10 5 80-2504000-800020… G29.969 10 4 30014000- G31.413 10 5 49016000- O stars B stars


Download ppt "1)The recipe of (OB) star formation: infall, outflow, rotation  the role of accretion disks 2)OB star formation: observational problems 3)The search for."

Similar presentations


Ads by Google