Presentation is loading. Please wait.

Presentation is loading. Please wait.

Introduction to microfabrication, chapter 1 Figures from: Franssila: Introduction to Microfabrication unless indicated otherwise.

Similar presentations


Presentation on theme: "Introduction to microfabrication, chapter 1 Figures from: Franssila: Introduction to Microfabrication unless indicated otherwise."— Presentation transcript:

1 Introduction to microfabrication, chapter 1 Figures from: Franssila: Introduction to Microfabrication unless indicated otherwise. sami.franssila@aalto.fi

2 Dimension in microworld Fig. 1.12

3 Fig. 1.3: Electron beam lithography defined gold-palladium nanobridge Microfabrication vs. Nanofabrication ? Fig. 24.4: Focussed ion beam patterned Aalto vase

4 Materials substrate thin film 2 surface interface 2 interface 1 Substrate: thick piece of material (0.5 mm = 500 µm) Thin films: 10-1000 nm; silicon most often Fig. 1.5 thin film 1

5 Common materials Substrates: Silicon (glass) Thin films: SiO 2 SiN x Polysilicon Al Cu W Pt Others: Photoresist

6 The most common film: SiO 2 Si O2O2 O2O2 O2O2 O2O2 O2O2 O2O2 Thermal oxidation Si SiO 2 1000 o C 1 µm 500 µm

7 SiO 2 thin films: 2 cases Si O2O2 O2O2 O2O2 O2O2 O2O2 W 1000 o C ? Si O2O2 O2O2 O2O2 O2O2 400 o C Al ?

8 Solution: CVD Si O2O2 O2O2 SiH 4 O2O2 400 o C SiH 4 Al Si SiH 4 SiH 4 + O 2  SiO 2 + 2H 2 SiO 2 CVD = Chemical Vapor Deposition

9 Patterning: lithography and etching Fig. 9.1

10 Photoresist exposure Positive resist: exposed parts become soluble Negative resist: exposed parts cross- linked and insoluble photomask photoresist UV light silicon wafer Fig. 9.10

11 After lithography ab c de f a)ion implantation (Ch 15) b)wet etching (Ch 11) c)moulding (Ch 18) d)plasma etching (Ch 11) e)electroplating (Ch 29) f)lift-off (Ch 23) Fig. 9.14

12 Doping backside metallization top metallization antireflection coating ( ARC ) p-substrate p+ diffusion n -diffusion Doping can change resisitivity dramatically, and even change dopant type from p to n and vice versa. Original wafer: p-substrate (e.g. 10 15 cm -3 boron) n-diffusion (e.g. 10 16 cm -3 phosphorous) p+ diffusion (e.g. 10 18 cm -3 boron) Fig. 25.2

13 P-type silicon substrate (boron majority) boron phosporousimpurities

14 Phosphorous diffusion  top layer turned into n-type Bulk of the wafer remains p-type, because diffusion does not extent to depth of wafer.

15 Junction depth x j X j is the depth where diffused dopant concentration equals wafer dopant concentration (of opposite type). x j ≈ 1.2 µm C dopant 10 20 cm -3 10 18 cm -3 10 16 cm -3 0.5 1.0 1.5 depth/µm

16 Silicon wafers scribe lines for chip dicing wafer flat for orientation checking alignment marks for lithography edge exclusion Fig. 1.20 Real estate allocation on a wafer Fig. 1.4: 100 mm diameter silicon wafer

17 Silicon strengths silicon is a good mechanical material silicon is good thermal conductor silicon is transparent in infrared silicon is a semiconductor silicon is optically smooth and flat silicon is known inside out  consider silicon first, alternatives then

18 Single crystalline silicon (a.k.a. monocrystalline) silicon Fig. 4.6

19 Polycrystalline and amorphous materials Fig. 1.6

20 Fig. 1.1: Microtechnology subfield evolution from 1960’s onwards.

21 Silicon microelectronics 0.5 µm CMOS in SEM micrograph65 nm CMOS in TEM micrograph Fig. 1.15Fig. 1.11

22 Optoelectronics Fig. 1.14: Silicon solar cell Fig. 6.2: GaAs multiple quantum well solar cell

23 MEMS: Micro Electro Mechanical Systems Fig. 29.21: Microgears, courtesy Sandia National Labs. Fig. 21.3: comb-drive actuator

24 Power MEMS Fig. 1.17: Microturbine Fabricated by bonding together 5 silicon wafers.

25 MOEMS (Micro Opto Electro Mechanical Systems) Fig. 1.2: Micromirror made of silicon, 1 mm diameter, is supported by 1.2 µm wide, 4 µm thick torsion bars (detail figure), from ref. Greywall. Fig. 21.4: variable optical attenator

26 Micro-optics Fig. 1.7: Aluminum oxide and titanium oxide thin films deposited over silicon waveguide ridges, courtesy Tapani Alasaarela. Fig. 7.13: Refractive index SiO 2 /SiO x N y /SiO 2 waveguide: n f 1.46/1.52/1.46. From ref. Hilleringmann.

27 Microfluidics and BioMEMS Fig. 1.13: silicon microneedle Fig. 1.11: Oxy-hydrogen burner flame ionization detector

28 Cleanroom Fig. 1.19

29 Yield Yield of a total process is a product of yield of individual process steps 50 step MEMS process Y 0 = 0.999  95% 500 step DRAM process, Y 0 = 0.999  61%

30 Yield (2) Yield depends on chip area (A) and defect density (D) D = 0.01 mm -2 (= 1/cm 2 ) A= 10 mm 2  Y = 90% A= 100 mm 2  Y = 37%

31 Microindustries are big Integrated circuits$330 B Other semiconductors$30 B Flat panels displays$130 B Solar cells$100 B Hard disks$30 B MEMS$10 B Equipment$60 B Materials$10 B


Download ppt "Introduction to microfabrication, chapter 1 Figures from: Franssila: Introduction to Microfabrication unless indicated otherwise."

Similar presentations


Ads by Google