Download presentation
Presentation is loading. Please wait.
Published byCecilia Paul Modified over 8 years ago
1
Introduction to microfabrication, chapter 1 Figures from: Franssila: Introduction to Microfabrication unless indicated otherwise. sami.franssila@aalto.fi
2
Dimension in microworld Fig. 1.12
3
Fig. 1.3: Electron beam lithography defined gold-palladium nanobridge Microfabrication vs. Nanofabrication ? Fig. 24.4: Focussed ion beam patterned Aalto vase
4
Materials substrate thin film 2 surface interface 2 interface 1 Substrate: thick piece of material (0.5 mm = 500 µm) Thin films: 10-1000 nm; silicon most often Fig. 1.5 thin film 1
5
Common materials Substrates: Silicon (glass) Thin films: SiO 2 SiN x Polysilicon Al Cu W Pt Others: Photoresist
6
The most common film: SiO 2 Si O2O2 O2O2 O2O2 O2O2 O2O2 O2O2 Thermal oxidation Si SiO 2 1000 o C 1 µm 500 µm
7
SiO 2 thin films: 2 cases Si O2O2 O2O2 O2O2 O2O2 O2O2 W 1000 o C ? Si O2O2 O2O2 O2O2 O2O2 400 o C Al ?
8
Solution: CVD Si O2O2 O2O2 SiH 4 O2O2 400 o C SiH 4 Al Si SiH 4 SiH 4 + O 2 SiO 2 + 2H 2 SiO 2 CVD = Chemical Vapor Deposition
9
Patterning: lithography and etching Fig. 9.1
10
Photoresist exposure Positive resist: exposed parts become soluble Negative resist: exposed parts cross- linked and insoluble photomask photoresist UV light silicon wafer Fig. 9.10
11
After lithography ab c de f a)ion implantation (Ch 15) b)wet etching (Ch 11) c)moulding (Ch 18) d)plasma etching (Ch 11) e)electroplating (Ch 29) f)lift-off (Ch 23) Fig. 9.14
12
Doping backside metallization top metallization antireflection coating ( ARC ) p-substrate p+ diffusion n -diffusion Doping can change resisitivity dramatically, and even change dopant type from p to n and vice versa. Original wafer: p-substrate (e.g. 10 15 cm -3 boron) n-diffusion (e.g. 10 16 cm -3 phosphorous) p+ diffusion (e.g. 10 18 cm -3 boron) Fig. 25.2
13
P-type silicon substrate (boron majority) boron phosporousimpurities
14
Phosphorous diffusion top layer turned into n-type Bulk of the wafer remains p-type, because diffusion does not extent to depth of wafer.
15
Junction depth x j X j is the depth where diffused dopant concentration equals wafer dopant concentration (of opposite type). x j ≈ 1.2 µm C dopant 10 20 cm -3 10 18 cm -3 10 16 cm -3 0.5 1.0 1.5 depth/µm
16
Silicon wafers scribe lines for chip dicing wafer flat for orientation checking alignment marks for lithography edge exclusion Fig. 1.20 Real estate allocation on a wafer Fig. 1.4: 100 mm diameter silicon wafer
17
Silicon strengths silicon is a good mechanical material silicon is good thermal conductor silicon is transparent in infrared silicon is a semiconductor silicon is optically smooth and flat silicon is known inside out consider silicon first, alternatives then
18
Single crystalline silicon (a.k.a. monocrystalline) silicon Fig. 4.6
19
Polycrystalline and amorphous materials Fig. 1.6
20
Fig. 1.1: Microtechnology subfield evolution from 1960’s onwards.
21
Silicon microelectronics 0.5 µm CMOS in SEM micrograph65 nm CMOS in TEM micrograph Fig. 1.15Fig. 1.11
22
Optoelectronics Fig. 1.14: Silicon solar cell Fig. 6.2: GaAs multiple quantum well solar cell
23
MEMS: Micro Electro Mechanical Systems Fig. 29.21: Microgears, courtesy Sandia National Labs. Fig. 21.3: comb-drive actuator
24
Power MEMS Fig. 1.17: Microturbine Fabricated by bonding together 5 silicon wafers.
25
MOEMS (Micro Opto Electro Mechanical Systems) Fig. 1.2: Micromirror made of silicon, 1 mm diameter, is supported by 1.2 µm wide, 4 µm thick torsion bars (detail figure), from ref. Greywall. Fig. 21.4: variable optical attenator
26
Micro-optics Fig. 1.7: Aluminum oxide and titanium oxide thin films deposited over silicon waveguide ridges, courtesy Tapani Alasaarela. Fig. 7.13: Refractive index SiO 2 /SiO x N y /SiO 2 waveguide: n f 1.46/1.52/1.46. From ref. Hilleringmann.
27
Microfluidics and BioMEMS Fig. 1.13: silicon microneedle Fig. 1.11: Oxy-hydrogen burner flame ionization detector
28
Cleanroom Fig. 1.19
29
Yield Yield of a total process is a product of yield of individual process steps 50 step MEMS process Y 0 = 0.999 95% 500 step DRAM process, Y 0 = 0.999 61%
30
Yield (2) Yield depends on chip area (A) and defect density (D) D = 0.01 mm -2 (= 1/cm 2 ) A= 10 mm 2 Y = 90% A= 100 mm 2 Y = 37%
31
Microindustries are big Integrated circuits$330 B Other semiconductors$30 B Flat panels displays$130 B Solar cells$100 B Hard disks$30 B MEMS$10 B Equipment$60 B Materials$10 B
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.