Download presentation
Presentation is loading. Please wait.
Published byTheresa Price Modified over 8 years ago
1
© 2006 Prentice Hall, Inc.3 – 1 Operations Management Chapter 3 – Project Management Chapter 3 – Project Management © 2006 Prentice Hall, Inc. PowerPoint presentation to accompany Heizer/Render Principles of Operations Management, 6e Operations Management, 8e
2
© 2006 Prentice Hall, Inc.3 – 2 Outline Global Company Profile: Bechtel Group The Importance Of Project Management Project Planning The Project Manager Work Breakdown Structure Project Scheduling
3
© 2006 Prentice Hall, Inc.3 – 3 Outline - Continued Project Controlling Project Management Techniques: PERT And CPM The Framework Of PERT And CPM Network Diagrams And Approaches Activity-on-Node Example Activity-on-Arrow Example
4
© 2006 Prentice Hall, Inc.3 – 4 Outline - Continued Determining The Project Schedule Forward Pass Backward Pass Calculating Slack Time And Identifying The Critical Path(s) Variability In Activity Times Three Time Estimates In PERT Probability Of Project Completion
5
© 2006 Prentice Hall, Inc.3 – 5 Outline - Continued Cost-time Trade-offs And Project Crashing A Critique Of PERT And CPM Using Microsoft Project To Manage Projects Creating A Project Schedule Using MS Project Tracking Progress And Managing Costs Using MS Project
6
© 2006 Prentice Hall, Inc.3 – 6 Learning Objectives Work breakdown structure Critical path AOA and AON Networks Forward and backward passes Variability in activity times When you complete this chapter, you should be able to : Identify or Define:
7
© 2006 Prentice Hall, Inc.3 – 7 Learning Objectives The role of the project manager Program evaluation and review technique (PERT) Critical path method (CPM) Crashing a project The use of MS Project When you complete this chapter, you should be able to : Describe or Explain:
8
© 2006 Prentice Hall, Inc.3 – 8 Bechtel Projects Restoring over 650 oil wells in Kuwait left ablaze or uncapped after Desert Storm Building 26 massive distribution centers in just two years for the internet company Webvan Group Constructing 30 high-security data centers worldwide for Equinix, Inc. Building and running a rail line between London and the Channel Tunnel ($4.6 billion) Developing an oil pipeline from the Caspian Sea region to Russia ($850 million)
9
© 2006 Prentice Hall, Inc.3 – 9 Bechtel Projects Expanding the Dubai Airport in the UAE ($600 million), and the Miami Airport in Florida ($2 billion) Building liquid natural gas plants in Yemen $2 billion) and in Trinidad, West Indies ($1 billion) Building a new subway for Athens, Greece ($2.6 billion) Constructing a natural gas pipeline in Thailand ($700 million) Building a highway to link the north and south of Croatia ($303 million)
10
© 2006 Prentice Hall, Inc.3 – 10 Strategic Importance of Project Management Bechtel Kuwait Project: 8,000 workers 1,000 construction professionals 100 medical personnel 2 helicopter evacuation teams 6 full-service dining halls 27,000 meals per day 40 bed field hospital
11
© 2006 Prentice Hall, Inc.3 – 11 Strategic Importance of Project Management Microsoft Windows Longhorn Project : hundreds of programmers millions of lines of code millions of dollars cost Ford Redesign of Mustang Project: 450 member project team Cost $700-million 25% faster and 30% cheaper than comparable project at Ford
12
© 2006 Prentice Hall, Inc.3 – 12 Single unit Many related activities Difficult production planning and inventory control General purpose equipment High labor skills Project Characteristics
13
© 2006 Prentice Hall, Inc.3 – 13 Examples of Projects Building Construction Research Project
14
© 2006 Prentice Hall, Inc.3 – 14 Project Organization Works Best When Work can be defined with a specific goal and deadline The job is unique or somewhat unfamiliar to the existing organization The work contains complex interrelated tasks requiring specialized skills The project is temporary but critical to the organization
15
© 2006 Prentice Hall, Inc.3 – 15 Management of Projects Planning - goal setting, defining the project, team organization Scheduling - relates people, money, and supplies to specific activities and activities to each other Controlling - monitors resources, costs, quality, and budgets; revises plans and shifts resources to meet time and cost demands
16
© 2006 Prentice Hall, Inc.3 – 16 Planning Objectives Resources Work break-down schedule Organization Scheduling Project activities Start & end times Network Controlling Monitor, compare, revise, action Project Management Activities
17
© 2006 Prentice Hall, Inc.3 – 17 Project Planning, Scheduling, and Controlling Figure 3.1 BeforeStart of projectDuring projectTimelineproject
18
© 2006 Prentice Hall, Inc.3 – 18 Project Planning, Scheduling, and Controlling Figure 3.1 BeforeStart of projectDuring projectTimelineproject
19
© 2006 Prentice Hall, Inc.3 – 19 Project Planning, Scheduling, and Controlling Figure 3.1 BeforeStart of projectDuring projectTimelineproject
20
© 2006 Prentice Hall, Inc.3 – 20 Project Planning, Scheduling, and Controlling Figure 3.1 BeforeStart of projectDuring projectTimelineproject
21
© 2006 Prentice Hall, Inc.3 – 21 Project Planning, Scheduling, and Controlling Figure 3.1 BeforeStart of projectDuring projectTimelineproject Budgets Delayed activities report Slack activities report Time/cost estimates Budgets Engineering diagrams Cash flow charts Material availability details CPM/PERT Gantt charts Milestone charts Cash flow schedules
22
© 2006 Prentice Hall, Inc.3 – 22 Establishing objectives Defining project Creating work breakdown structure Determining resources Forming organization Project Planning
23
© 2006 Prentice Hall, Inc.3 – 23 Often temporary structure Uses specialists from entire company Headed by project manager Coordinates activities Monitors schedule and costs Permanent structure called ‘matrix organization’ Project Organization
24
© 2006 Prentice Hall, Inc.3 – 24 A Sample Project Organization Test Engineer Mechanical Engineer Project 1 Project Manager Technician Project 2 Project Manager Electrical Engineer Computer Engineer Marketing Finance Human Resources Design Quality Mgt Production President Figure 3.2
25
© 2006 Prentice Hall, Inc.3 – 25 Matrix Organization MarketingOperationsEngineeringFinance Project 1 Project 2 Project 3 Project 4
26
© 2006 Prentice Hall, Inc.3 – 26 The Role of the Project Manager Highly visible Responsible for making sure that: All necessary activities are finished in order and on time The project comes in within budget The project meets quality goals The people assigned to the project receive motivation, direction, and information
27
© 2006 Prentice Hall, Inc.3 – 27 The Role of the Project Manager Highly visible Responsible for making sure that: All necessary activities are finished in order and on time The project comes in within budget The project meets quality goals The people assigned to the project receive motivation, direction, and information Project managers should be: Good coaches Good communicators Able to organize activities from a variety of disciplines
28
© 2006 Prentice Hall, Inc.3 – 28 Ethical Issues Bid rigging – divulging confidential information to give some bidders an unfair advantage “Low balling” contractors – try to “buy” the project by bidding low and hope to renegotiate or cut corners Bribery – particularly on international projects Expense account padding Use of substandard materials Compromising health and safety standards Withholding needed information Failure to admit project failure at close
29
© 2006 Prentice Hall, Inc.3 – 29 Work Breakdown Structure Level 1.Project 2.Major tasks in the project 3.Subtasks in the major tasks 4.Activities (or work packages) to be completed
30
© 2006 Prentice Hall, Inc.3 – 30 Work Breakdown Structure Figure 3.3 Level ID LevelNumberActivity 11.0Develop/launch Windows Longhorn OS 21.1Development of GUIs 21.2Ensure compatibility with earlier Windows versions 31.21Compatibility with Windows ME 31.22Compatibility with Windows XP 31.23Compatibility with Windows 2000 41.231Ability to import files
31
© 2006 Prentice Hall, Inc.3 – 31 Identifying precedence relationships Sequencing activities Determining activity times & costs Estimating material and worker requirements Determining critical activities Project Scheduling
32
© 2006 Prentice Hall, Inc.3 – 32 Purposes of Project Scheduling 1.Shows the relationship of each activity to others and to the whole project 2.Identifies the precedence relationships among activities 3.Encourages the setting of realistic time and cost estimates for each activity 4.Helps make better use of people, money, and material resources by identifying critical bottlenecks in the project
33
© 2006 Prentice Hall, Inc.3 – 33 Gantt chart Critical Path Method (CPM) Program Evaluation and Review Technique (PERT) Project Management Techniques
34
© 2006 Prentice Hall, Inc.3 – 34 A Simple Gantt Chart Time J F M A M J J A S Design Prototype Test Revise Production
35
© 2006 Prentice Hall, Inc.3 – 35 Passengers Baggage Fueling Cargo and mail Galley servicing Lavatory servicing Drinking water Cabin cleaning Cargo and mail Flight services Operating crew Baggage Passengers Deplaning Baggage claim Container offload Pumping Engine injection water Container offload Main cabin door Aft cabin door Aft, center, forward Loading First-class section Economy section Container/bulk loading Galley/cabin check Receive passengers Aircraft check Loading Boarding 015304560 Minutes Service For A Delta Jet Figure 3.4
36
© 2006 Prentice Hall, Inc.3 – 36 Project Control Reports Detailed cost breakdowns for each task Total program labor curves Cost distribution tables Functional cost and hour summaries Raw materials and expenditure forecasts Variance reports Time analysis reports Work status reports
37
© 2006 Prentice Hall, Inc.3 – 37 Network techniques Developed in 1950’s CPM by DuPont for chemical plants (1957) PERT by Booz, Allen & Hamilton with the U.S. Navy, for Polaris missile (1958) Consider precedence relationships and interdependencies Each uses a different estimate of activity times PERT and CPM
38
© 2006 Prentice Hall, Inc.3 – 38 Six Steps PERT & CPM 1.Define the project and prepare the work breakdown structure 2.Develop relationships among the activities - decide which activities must precede and which must follow others 3.Draw the network connecting all of the activities
39
© 2006 Prentice Hall, Inc.3 – 39 Six Steps PERT & CPM 4.Assign time and/or cost estimates to each activity 5.Compute the longest time path through the network – this is called the critical path 6.Use the network to help plan, schedule, monitor, and control the project
40
© 2006 Prentice Hall, Inc.3 – 40 1.When will the entire project be completed? 2.What are the critical activities or tasks in the project? 3.Which are the noncritical activities? 4.What is the probability the project will be completed by a specific date? Questions PERT & CPM Can Answer
41
© 2006 Prentice Hall, Inc.3 – 41 5.Is the project on schedule, behind schedule, or ahead of schedule? 6.Is the money spent equal to, less than, or greater than the budget? 7.Are there enough resources available to finish the project on time? 8.If the project must be finished in a shorter time, what is the way to accomplish this at least cost? Questions PERT & CPM Can Answer
42
© 2006 Prentice Hall, Inc.3 – 42 A Comparison of AON and AOA Network Conventions Activity onActivityActivity on Node (AON)MeaningArrow (AOA) A comes before B, which comes before C (a) A B C BAC A and B must both be completed before C can start (b) A C C B A B B and C cannot begin until A is completed (c) B A C A B C Figure 3.5
43
© 2006 Prentice Hall, Inc.3 – 43 A Comparison of AON and AOA Network Conventions Activity onActivityActivity on Node (AON)MeaningArrow (AOA) C and D cannot begin until A and B have both been completed (d) A B C D B AC D C cannot begin until both A and B are completed; D cannot begin until B is completed. A dummy activity is introduced in AOA (e) CA BD Dummy activity A B C D Figure 3.5
44
© 2006 Prentice Hall, Inc.3 – 44 A Comparison of AON and AOA Network Conventions Activity onActivityActivity on Node (AON)MeaningArrow (AOA) B and C cannot begin until A is completed. D cannot begin until both B and C are completed. A dummy activity is again introduced in AOA. (f) A C DB AB C D Dummy activity Figure 3.5
45
© 2006 Prentice Hall, Inc.3 – 45 AON Example ActivityDescription Immediate Predecessors A Build internal components — B Modify roof and floor — C Construct collection stack A D Pour concrete and install frame A, B E Build high-temperature burner C F Install pollution control system C G Install air pollution device D, E H Inspect and test F, G Milwaukee Paper Manufacturing's Activities and Predecessors Table 3.1
46
© 2006 Prentice Hall, Inc.3 – 46 AON Network for Milwaukee Paper A Start B Start Activity Activity A (Build Internal Components) Activity B (Modify Roof and Floor) Figure 3.6
47
© 2006 Prentice Hall, Inc.3 – 47 AON Network for Milwaukee Paper Figure 3.7 C D A Start B Activity A Precedes Activity C Activities A and B Precede Activity D
48
© 2006 Prentice Hall, Inc.3 – 48 AON Network for Milwaukee Paper G E F H C A Start DB Arrows Show Precedence Relationships Figure 3.8
49
© 2006 Prentice Hall, Inc.3 – 49H (Inspect/ Test) 7 Dummy Activity AOA Network for Milwaukee Paper 6 F (Install Controls) E (Build Burner) G (Install Pollution Device) 5 D (Pour Concrete/ Install Frame) 4C (Construct Stack) 1 3 2 B (Modify Roof/Floor) A (Build Internal Components) Figure 3.9
50
© 2006 Prentice Hall, Inc.3 – 50 Determining the Project Schedule Perform a Critical Path Analysis The critical path is the longest path through the network The critical path is the shortest time in which the project can be completed Any delay in critical path activities delays the project Critical path activities have no slack time
51
© 2006 Prentice Hall, Inc.3 – 51 Determining the Project Schedule Perform a Critical Path Analysis ActivityDescriptionTime (weeks) ABuild internal components2 BModify roof and floor3 CConstruct collection stack2 DPour concrete and install frame4 EBuild high-temperature burner4 FInstall pollution control system 3 GInstall air pollution device5 HInspect and test2 Total Time (weeks)25 Table 3.2
52
© 2006 Prentice Hall, Inc.3 – 52 Determining the Project Schedule Perform a Critical Path Analysis Table 3.2 ActivityDescriptionTime (weeks) ABuild internal components2 BModify roof and floor3 CConstruct collection stack2 DPour concrete and install frame4 EBuild high-temperature burner4 FInstall pollution control system 3 GInstall air pollution device5 HInspect and test2 Total Time (weeks)25 Earliest start (ES) =earliest time at which an activity can start, assuming all predecessors have been completed Earliest finish (EF) =earliest time at which an activity can be finished Latest start (LS) =latest time at which an activity can start so as to not delay the completion time of the entire project Latest finish (LF) =latest time by which an activity has to be finished so as to not delay the completion time of the entire project
53
© 2006 Prentice Hall, Inc.3 – 53 Determining the Project Schedule Perform a Critical Path Analysis Figure 3.10 A Activity Name or Symbol Earliest Start ES Earliest Finish EF Latest Start LS Latest Finish LF Activity Duration 2
54
© 2006 Prentice Hall, Inc.3 – 54 Forward Pass Begin at starting event and work forward Earliest Start Time Rule: If an activity has only one immediate predecessor, its ES equals the EF of the predecessor If an activity has multiple immediate predecessors, its ES is the maximum of all the EF values of its predecessors ES = Max (EF of all immediate predecessors)
55
© 2006 Prentice Hall, Inc.3 – 55 Forward Pass Begin at starting event and work forward Earliest Finish Time Rule: The earliest finish time (EF) of an activity is the sum of its earliest start time (ES) and its activity time EF = ES + Activity time
56
© 2006 Prentice Hall, Inc.3 – 56 ES/EF Network for Milwaukee Paper Start 0 0 ES 0 EF = ES + Activity time
57
© 2006 Prentice Hall, Inc.3 – 57 ES/EF Network for Milwaukee Paper Start 0 0 0 A2A2 2 EF of A = ES of A + 2 0 ES of A
58
© 2006 Prentice Hall, Inc.3 – 58 B3B3 ES/EF Network for Milwaukee Paper Start 0 0 0 A2A2 20 3 EF of B = ES of B + 3 0 ES of B
59
© 2006 Prentice Hall, Inc.3 – 59 C2C2 24 ES/EF Network for Milwaukee Paper B3B3 03 Start 0 0 0 A2A2 20
60
© 2006 Prentice Hall, Inc.3 – 60 C2C2 24 ES/EF Network for Milwaukee Paper B3B3 03 Start 0 0 0 A2A2 20 D4D4 7 3 = Max (2, 3)
61
© 2006 Prentice Hall, Inc.3 – 61 D4D4 37 C2C2 24 ES/EF Network for Milwaukee Paper B3B3 03 Start 0 0 0 A2A2 20
62
© 2006 Prentice Hall, Inc.3 – 62 E4E4 F3F3 G5G5 H2H2 481315 4 813 7 D4D4 37 C2C2 24 ES/EF Network for Milwaukee Paper B3B3 03 Start 0 0 0 A2A2 20 Figure 3.11
63
© 2006 Prentice Hall, Inc.3 – 63 Backward Pass Begin with the last event and work backwards Latest Finish Time Rule: If an activity is an immediate predecessor for just a single activity, its LF equals the LS of the activity that immediately follows it If an activity is an immediate predecessor to more than one activity, its LF is the minimum of all LS values of all activities that immediately follow it LF = Min (LS of all immediate following activities)
64
© 2006 Prentice Hall, Inc.3 – 64 Backward Pass Begin with the last event and work backwards Latest Start Time Rule: The latest start time (LS) of an activity is the difference of its latest finish time (LF) and its activity time LS = LF – Activity time
65
© 2006 Prentice Hall, Inc.3 – 65 LS/LF Times for Milwaukee Paper E4E4 F3F3 G5G5 H2H2 481315 4 813 7 D4D4 37 C2C2 24 B3B3 03 Start 0 0 0 A2A2 20 Figure 3.12 LF = EF of Project 1513 LS = LF – Activity time
66
© 2006 Prentice Hall, Inc.3 – 66 LS/LF Times for Milwaukee Paper E4E4 F3F3 G5G5 H2H2 481315 4 813 7 15 D4D4 37 C2C2 24 B3B3 03 Start 0 0 0 A2A2 20 LF = Min(LS of following activity) 1013 Figure 3.12
67
© 2006 Prentice Hall, Inc.3 – 67 LS/LF Times for Milwaukee Paper E4E4 F3F3 G5G5 H2H2 481315 4 813 7 15 1013 8 48 D4D4 37 C2C2 24 B3B3 03 Start 0 0 0 A2A2 20 LF = Min(4, 10) 42 Figure 3.12
68
© 2006 Prentice Hall, Inc.3 – 68 LS/LF Times for Milwaukee Paper E4E4 F3F3 G5G5 H2H2 481315 4 813 7 15 1013 8 48 D4D4 37 C2C2 24 B3B3 03 Start 0 0 0 A2A2 20 42 84 20 41 00 Figure 3.12
69
© 2006 Prentice Hall, Inc.3 – 69 Computing Slack Time After computing the ES, EF, LS, and LF times for all activities, compute the slack or free time for each activity Slack is the length of time an activity can be delayed without delaying the entire project Slack = LS – ES or Slack = LF – EF
70
© 2006 Prentice Hall, Inc.3 – 70 Computing Slack Time EarliestEarliestLatestLatestOn StartFinishStartFinishSlackCritical ActivityESEFLSLFLS – ESPath A02020Yes B03141No C24240Yes D37481No E48480Yes F4710136No G8138130Yes H131513150Yes Table 3.3
71
© 2006 Prentice Hall, Inc.3 – 71 Critical Path for Milwaukee Paper Figure 3.13 E4E4 F3F3 G5G5 H2H2 481315 4 813 7 15 1013 8 48 D4D4 37 C2C2 24 B3B3 03 Start 0 0 0 A2A2 20 42 84 20 41 00
72
© 2006 Prentice Hall, Inc.3 – 72 ES – EF Gantt Chart for Milwaukee Paper ABuild internal components BModify roof and floor CConstruct collection stack DPour concrete and install frame EBuild high- temperature burner FInstall pollution control system GInstall air pollution device HInspect and test 12345678910111213141516
73
© 2006 Prentice Hall, Inc.3 – 73 LS – LF Gantt Chart for Milwaukee Paper ABuild internal components BModify roof and floor CConstruct collection stack DPour concrete and install frame EBuild high- temperature burner FInstall pollution control system GInstall air pollution device HInspect and test 12345678910111213141516
74
© 2006 Prentice Hall, Inc.3 – 74 CPM assumes we know a fixed time estimate for each activity and there is no variability in activity times PERT uses a probability distribution for activity times to allow for variability Variability in Activity Times
75
© 2006 Prentice Hall, Inc.3 – 75 Three time estimates are required Optimistic time (a) – if everything goes according to plan Most–likely time (m) – most realistic estimate Pessimistic time (b) – assuming very unfavorable conditions Variability in Activity Times
76
© 2006 Prentice Hall, Inc.3 – 76 Estimate follows beta distribution Variability in Activity Times Expected time: Variance of times: t = (a + 4m + b)/6 v = [(b – a)/6] 2
77
© 2006 Prentice Hall, Inc.3 – 77 Estimate follows beta distribution Variability in Activity Times Expected time: Variance of times: t = (a + 4m + b)/6 v = [(b − a)/6]2 Probability of 1 in 100 of > b occurring Probability of 1 in 100 of < a occurring Probability Optimistic Time (a) Most Likely Time (m) Pessimistic Time (b) Activity Time
78
© 2006 Prentice Hall, Inc.3 – 78 Computing Variance MostExpected OptimisticLikelyPessimisticTimeVariance Activity ambt = (a + 4m + b)/6[(b – a)/6] 2 A1232.11 B2343.11 C1232.11 D2464.44 E14741.00 F12931.78 G341151.78 H1232.11 Table 3.4
79
© 2006 Prentice Hall, Inc.3 – 79 Probability of Project Completion Project variance is computed by summing the variances of critical activities 2 = Project variance = (variances of activities on critical path) p
80
© 2006 Prentice Hall, Inc.3 – 80 Probability of Project Completion Project variance is computed by summing the variances of critical activities Project variance 2 =.11 +.11 + 1.00 + 1.78 +.11 = 3.11 Project standard deviation p = Project variance = 3.11 = 1.76 weeks p
81
© 2006 Prentice Hall, Inc.3 – 81 Probability of Project Completion PERT makes two more assumptions: Total project completion times follow a normal probability distribution Activity times are statistically independent
82
© 2006 Prentice Hall, Inc.3 – 82 Probability of Project Completion Standard deviation = 1.76 weeks 15 Weeks (Expected Completion Time) Figure 3.15
83
© 2006 Prentice Hall, Inc.3 – 83 Probability of Project Completion What is the probability this project can be completed on or before the 16 week deadline? Z=–/ p = (16 wks – 15 wks)/1.76 = 0.57 dueexpected date dateof completion Where Z is the number of standard deviations the due date lies from the mean
84
© 2006 Prentice Hall, Inc.3 – 84 Probability of Project Completion What is the probability this project can be completed on or before the 16 week deadline? Z=−/ p = (16 wks − 15 wks)/1.76 = 0.57 dueexpected date dateof completion Where Z is the number of standard deviations the due date lies from the mean.00.01.07.08.1.50000.50399.52790.53188.2.53983.54380.56749.57142.5.69146.69497.71566.71904.6.72575.72907.74857.75175 From Appendix I
85
© 2006 Prentice Hall, Inc.3 – 85 Probability of Project Completion Time Probability (T ≤ 16 weeks) is 71.57% Figure 3.16 0.57 Standard deviations 1516 WeeksWeeks
86
© 2006 Prentice Hall, Inc.3 – 86 Determining Project Completion Time Probability of 0.01 Z Figure 3.17 From Appendix I Probability of 0.99 2.33 Standard deviations 02.33
87
© 2006 Prentice Hall, Inc.3 – 87 Variability of Completion Time for Noncritical Paths Variability of times for activities on noncritical paths must be considered when finding the probability of finishing in a specified time Variation in noncritical activity may cause change in critical path
88
© 2006 Prentice Hall, Inc.3 – 88 What Project Management Has Provided So Far The project’s expected completion time is 15 weeks There is a 71.57% chance the equipment will be in place by the 16 week deadline Five activities (A, C, E, G, and H) are on the critical path Three activities (B, D, F) have slack time and are not on the critical path A detailed schedule is available
89
© 2006 Prentice Hall, Inc.3 – 89 Trade-Offs And Project Crashing The project is behind schedule The completion time has been moved forward It is not uncommon to face the following situations: Shortening the duration of the project is called project crashing
90
© 2006 Prentice Hall, Inc.3 – 90 Factors to Consider When Crashing A Project The amount by which an activity is crashed is, in fact, permissible Taken together, the shortened activity durations will enable us to finish the project by the due date The total cost of crashing is as small as possible
91
© 2006 Prentice Hall, Inc.3 – 91 Steps in Project Crashing 1.Compute the crash cost per time period. If crash costs are linear over time: Crash cost per period = (Crash cost – Normal cost) (Normal time – Crash time) 2.Using current activity times, find the critical path and identify the critical activities
92
© 2006 Prentice Hall, Inc.3 – 92 Steps in Project Crashing 3.If there is only one critical path, then select the activity on this critical path that (a) can still be crashed, and (b) has the smallest crash cost per period. If there is more than one critical path, then select one activity from each critical path such that (a) each selected activity can still be crashed, and (b) the total crash cost of all selected activities is the smallest. Note that a single activity may be common to more than one critical path.
93
© 2006 Prentice Hall, Inc.3 – 93 Steps in Project Crashing 4.Update all activity times. If the desired due date has been reached, stop. If not, return to Step 2.
94
© 2006 Prentice Hall, Inc.3 – 94 Crashing The Project Time (Wks)Cost ($)Crash CostCritical ActivityNormalCrashNormalCrashPer Wk ($)Path? A2122,00022,750750Yes B3130,00034,0002,000No C2126,00027,0001,000Yes D4248,00049,0001,000No E4256,00058,0001,000Yes F3230,00030,500500No G5280,00084,5001,500Yes H2116,00019,0003,000Yes Table 3.5
95
© 2006 Prentice Hall, Inc.3 – 95 Crash and Normal Times and Costs for Activity B ||| 123Time (Weeks) $34,000 $34,000 — $33,000 $33,000 — $32,000 $32,000 — $31,000 $31,000 — $30,000 $30,000 — — Activity Cost CrashNormal Crash Time Normal Time Crash Cost Normal Cost Crash Cost/Wk = Crash Cost – Normal Cost Normal Time – Crash Time = $34,000 – $30,000 3 – 1 = = $2,000/Wk $4,000 2 Wks Figure 3.18
96
© 2006 Prentice Hall, Inc.3 – 96 Critical Path And Slack Times For Milwaukee Paper Figure 3.19 E4E4 F3F3 G5G5 H2H2 481315 4 813 7 15 1013 8 48 D4D4 37 C2C2 24 B3B3 03 Start 0 0 0 A2A2 20 42 84 20 41 00 Slack = 1 Slack = 0 Slack = 6 Slack = 0
97
© 2006 Prentice Hall, Inc.3 – 97 Advantages of PERT/CPM 1.Especially useful when scheduling and controlling large projects 2.Straightforward concept and not mathematically complex 3.Graphical networks help to perceive relationships among project activities 4.Critical path and slack time analyses help pinpoint activities that need to be closely watched
98
© 2006 Prentice Hall, Inc.3 – 98 Advantages of PERT/CPM 5.Project documentation and graphics point out who is responsible for various activities 6.Applicable to a wide variety of projects 7.Useful in monitoring not only schedules but costs as well
99
© 2006 Prentice Hall, Inc.3 – 99 1.Project activities have to be clearly defined, independent, and stable in their relationships 2.Precedence relationships must be specified and networked together 3.Time estimates tend to be subjective and are subject to fudging by managers 4.There is an inherent danger of too much emphasis being placed on the longest, or critical, path Limitations of PERT/CPM
100
© 2006 Prentice Hall, Inc.3 – 100 Using Microsoft Project Program 3.1
101
© 2006 Prentice Hall, Inc.3 – 101 Using Microsoft Project Program 3.2
102
© 2006 Prentice Hall, Inc.3 – 102 Using Microsoft Project Program 3.3
103
© 2006 Prentice Hall, Inc.3 – 103 Using Microsoft Project Program 3.4
104
© 2006 Prentice Hall, Inc.3 – 104 Using Microsoft Project Program 3.5
105
© 2006 Prentice Hall, Inc.3 – 105 Using Microsoft Project Program 3.6
106
© 2006 Prentice Hall, Inc.3 – 106 Using Microsoft Project Program 3.7
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.