Download presentation
Presentation is loading. Please wait.
1
Lecture 4: Sampling and Reconstruction
Data Reconstruction (Hold) Reading: Chapter 3 of the textbook TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAAAAAAAAAA
2
A Typical Digital Control System
Sampling Reconstruction continuous-time signal discrete-time system continuous-time system ๐ ๐(๐ก) A/D Computer D/A Data Hold Plant ๐ฆ(๐ก) _ ๐(๐ก) discrete-time signal digital signal discrete-time signal continuous-time signal Sensor Sampling and data reconstruction needed to interface the digital computer with the physical world Sampling Continuous-time Signals Discrete-time Signals Data reconstruction
3
Sampler A sampler obtains from a continuous-time signal a discrete-time signal by sampling every ๐ seconds Input is a continuous-time signal ๐ ๐ก , ๐กโฅ0 Output is a discrete-time signal ๐(๐๐), ๐=0,1,โฆ Both signals have identical values at sampling moments Not a lossless procedure Not a time-invariant procedure ๐(๐ก) ๐(๐๐) ๐ ๐(๐ก) ๐(๐๐) โฏ ๐ 2๐ 3๐ 4๐ ๐ก
4
A/D Converter (ADC) (From Wikipedia: 4-channel stereo multiplexed analog-to-digital converter WM8775SEDS made by Wolfson Microelectronics placed on a X-Fi Fatal1ty) Pro sound card.
5
Reconstruction: Zero-Order Hold
Data reconstruction needed to convert digital controller output into a continuous-time signal to drive the plant Ideally both signals should agree at the sampling moment: 0, ๐, 2๐, โฆ The simplest data reconstruction is zero-order hold Given a discrete time signal ๐(๐๐), ๐=0,1,โฆ A continuous-time signal ๐ ๐ก , ๐กโฅ0, is reconstructed whose value at any time ๐ก is equal to the value of ๐(๐๐) in the closest sampling moment preceding ๐ก:
6
D/A Converter (DAC) AK4396 DAC for Headphone Output
(from An 8-Digit DAC implemented by R/2R resistor network From Wikipedia: 8-channel digital-to-analog converter Cirrus Logic CS4382 as used in a soundcard.
7
Sampled-Data Control System
๐(๐๐) ๐ข(๐๐) ๐ข(๐ก) ๐(๐ก) Digital controller Plant ๐ฆ(๐ก) Sampler Data hold _ Does there exist a transfer function from ๐(๐ก) to ๐ข(๐ก)? What about from ๐(๐๐) to ๐ข(๐๐)? Let us start from the simplest case: digital controller does nothing ๐(๐ก) ๐ (๐ก) ๐(๐๐) Sampler Data hold sampler and hold
8
Sampler and Zero-Order Hold
What is the effect of sampler and hold in frequency domain? ๐(๐ก) ๐ (๐ก) ๐(๐๐) Sampler Data hold ๐ธ(๐ ) ๐ธ(๐ง) ๐ธ (๐ ) ๐ (๐ก) ๐(๐ก) โฏ ๐ 2๐ 3๐ 4๐
9
Sampler and Zero-Order Hold
Laplace transform of ๐(๐ก): ๐ธ ๐ =โ[๐ ๐ก ] ๐ง-transform of ๐(๐๐): ๐ธ ๐ง = ๐=0 โ ๐ ๐๐ ๐ง โ๐ Laplace transform of ๐ ๐ก : ๐ ๐ก =๐ 0 1 ๐ก โ1 ๐กโ๐ +๐ ๐ 1 ๐กโ๐ โ1 1โ2๐ +โฏ = ๐=0 โ ๐ ๐๐ ๐ โ๐๐๐ โ
1โ ๐ โ๐๐ ๐ Independent of signal ๐(๐ก) ๐ธ โ ๐ =๐ธ ๐ง โ ๐ง= ๐ ๐๐ ๐ (๐ก) ๐(๐๐) โฏ ๐ 2๐ 3๐ 4๐
10
Sampler and Zero-Order Hold (cont.)
Sampler and zero-order hold can be broken up in two steps: ๐ธ ๐ ๐ ๐ธ โ ๐ ๐ธ ๐ ๐บ โ0 ๐ = 1โ ๐ โ๐๐ ๐ Ideal sampler 0-th order data hold ๐ธ โ ๐ =๐ 0 +๐ ๐ ๐ โ๐๐ +๐ 2๐ ๐ โ2๐๐ +โฏ In time domain: ๐ ๐ ๐ก ๐ โ ๐ก ๐ ๐ก ๐ where ๐ โ ๐ก is a string of impulses whose amplitudes are modulated by ๐(๐ก): ๐ โ ๐ก =๐ 0 ๐ฟ ๐ก +๐ ๐ ๐ฟ ๐กโ๐ +๐ 2๐ ๐ฟ ๐กโ2๐ +โฏ
11
Ideal Sampler ๐ โ ๐ก =๐ 0 ๐ฟ ๐ก +๐ ๐ ๐ฟ ๐กโ๐ +๐ 2๐ ๐ฟ ๐กโ2๐ +โฏ
๐ ๐ก ๐ โ ๐ก ๐ โ ๐ก =๐ 0 ๐ฟ ๐ก +๐ ๐ ๐ฟ ๐กโ๐ +๐ 2๐ ๐ฟ ๐กโ2๐ +โฏ =๐ ๐ก โ
[๐ฟ ๐ก +๐ฟ ๐กโ๐ +๐ฟ ๐กโ2๐ +โฏ] ๐ฟ ๐ ๐ก ๐ฟ ๐ ๐ก ๐ฟ ๐ ๐ก is a string of unit impulses T seconds apart: ๐ฟ ๐ ๐ก ๐ 2๐ 3๐ 4๐ ๐ ๐ก ๐ โ ๐ก Impulse Modulator
12
Remarks on Ideal Sampler
Not a physical entity (introduced for theoretical convenience) Linear but not time-invariant, cannot be modeled by a transfer function Can map different ๐(๐ก) to the same ๐ โ (๐ก) If ๐(๐ก) is discontinuous at a sampling time ๐๐, choose If ๐(๐ก) has impulses at sampling times, then ๐ โ ๐ก is not well defined ๐ โ ๐ก =๐ ๐ฟ ๐ก +๐ ๐ + ๐ฟ ๐กโ๐ +โฏ
13
Sampler and Hold: First Perspective
In the time domain: ๐ ๐(๐ก) ๐(๐๐) ๐ (๐ก) Zero-Order Hold Sampler In the frequency domain (a mixture of z- and Laplace transforms): ๐ ๐ธ ๐ ๐ธ ๐ง ๐ธ ๐ Zero-Order Hold Sampler ๐ธ ๐ง = ๐=0 โ ๐ ๐๐ ๐ง โ๐ is called the z-transform of ๐ธ(๐ )
14
Sampler and Hold: Second Perspective
In the time domain: ๐ ๐(๐ก) ๐ โ (๐ก) ๐ (๐ก) Ideal sampler Data hold In the frequency domain: ๐ ๐ธ ๐ ๐ธ โ ๐ ๐ธ ๐ ๐บ โ0 ๐ = 1โ ๐ โ๐๐ ๐ ๐ธ โ ๐ = ๐=0 โ ๐ ๐๐ ๐ โ๐๐๐ is called the star-transform of ๐ธ(๐ )
15
Relating the Two Perspectives
๐ธ(๐ง) sampler z-transform ๐ธ โ ๐ =๐ธ ๐ง โ ๐ง= ๐ ๐๐ ๐ธ(๐ ) ๐ธ (๐ ) Ideal sampler Zero-order hold star transform ๐บ โ0 ๐ = 1โ ๐ โ๐๐ ๐ ๐ธ โ (๐ )
16
Finding Star-Transform of ๐ธ(๐ )
Given E(s), find Approach I: If ๐ธ ๐ is a rational function (and โฆ), then where the summation is over all poles of E(ยธ) Approach II: (see Appendix III) where ๐ ๐ = 2๐ ๐ is called radian sampling frequency ๐ธ โ ๐ = ๐=0 โ ๐ ๐๐ ๐ โ๐๐๐ ๐ธ โ ๐ = [๐๐๐ ๐๐๐ข๐ ๐๐ ๐ธ ๐ 1 1โ ๐ โ๐(๐ โ๐) ] ๐ธ โ ๐ = 1 ๐ ๐=โโ โ ๐ธ ๐ +๐๐ ๐ ๐ + ๐(0) 2
17
Finding ๐ง-Transform of ๐ธ(๐ )
Given E(s), find Approach I: If ๐ธ ๐ is a rational function (and โฆ), then Approach II: find ๐ธ โ (๐ ) first, then Approach III: consult the ๐ง-transform table on pp. 676 ๐ธ ๐ง = ๐=0 โ ๐ ๐๐ ๐ง โ๐ ๐ธ ๐ง = [๐๐๐ ๐๐๐ข๐ ๐๐ ๐ธ ๐ 1 1โ ๐ง โ1 ๐ ๐๐ ] ๐ธ ๐ง = ๐ธ โ ๐ โ ๐ ๐๐ โ๐ง
18
Examples ๐ธ ๐ = 1 ๐ ๐ธ ๐ = 1 ๐ +2
19
Example ๐ธ ๐ = 1 ๐ +๐ 2 ๐ธ ๐ง = ๐๐ง ๐ โ๐๐ ๐งโ ๐ โ๐๐ 2 ๐ธ ๐ = 1 (๐ +1)(๐ +2)
๐ธ ๐ = 1 ๐ +๐ 2 ๐ธ ๐ง = ๐๐ง ๐ โ๐๐ ๐งโ ๐ โ๐๐ 2 ๐ธ ๐ = 1 (๐ +1)(๐ +2) ๐ธ ๐ = ๐ 2 ๐ 2 + ๐ 2 ๐ธ โ ๐ = ๐ โ๐๐ sin ๐๐ 1โ2 ๐ โ๐๐ cos ๐๐ + ๐ โ2๐๐
20
Effect of Time Delay on Star-Transform
If ๐ก0=๐๐ is an integer multiple of the sampling period ๐, then For general ๐ก0, the above is not true ๐ธ โ ๐ = ๐ โ๐๐๐ ๐ธ 1 โ ๐
21
Periodicity Property of ๐ธ โ (๐ )
๐ธ โ (๐ ) is periodic in ๐ with period ๐ ๐ ๐ =๐ 2๐ ๐ ๐ธ โ ๐ +๐๐ ๐ ๐ = ๐ธ โ (๐ ) for integer ๐
22
Strings of Poles of ๐ธ โ (๐ )
If ๐ธ(๐ ) has a pole at ๐, then ๐ธ โ (๐ ) has poles at ๐ยฑ๐๐ ๐ ๐ ๐ธ โ (๐ ) ๐ธ(๐ ) ๐ ๐ ๐ 2 ร ร ร Primary strip โ ๐ ๐ ๐ 2 ร
23
Data Reconstruction
24
Sampler and Hold: Second Perspective
In the time domain: ๐ ๐(๐ก) ๐ โ (๐ก) ๐ (๐ก) Ideal sampler Data hold In the frequency domain: ๐ ๐ธ ๐ ๐ธ โ ๐ ๐ธ ๐ ๐บ โ0 ๐ = 1โ ๐ โ๐๐ ๐
25
Data Reconstruction in Frequency Domain
๐(๐ก) ๐ โ (๐ก) ๐ (๐ก) ๐ธ(๐๐) ๐ธ โ (๐๐) ๐ธ (๐๐) Ideal sampling Data reconstruction ๐ธ โ ๐๐ = 1 ๐ ๐=โโ โ ๐ธ ๐๐+๐๐ ๐ ๐ + ๐(0) 2 ๐ธ ๐๐ = ๐บ โ0 ๐๐ ๐ธ โ (๐๐) (periodic extension in freq. domain) (data hold transfer function) Shannonโs Sampling Theorem: ๐(๐ก) can be uniquely reconstructed from ๐ โ (๐ก) if ๐ธ(๐๐) has no frequency component greater than ๐ ๐ 2 = ๐ ๐ Need to sample at least twice as fast as the highest frequency in ๐ธ(๐๐) Perfect reconstruction by the ideal low pass filter (physically infeasible)
26
Zero-Order Hold A physically feasible (causal) data hold transfer function is Frequency (magnitude) response ๐บ โ0 ๐ = 1โ ๐ โ๐๐ ๐ 1 with impulse response ๐ |๐บ โ0 ๐๐ |= 1โ ๐ โ๐๐๐ ๐๐ =๐ sin ๐๐ ๐ ๐ ๐๐ ๐ ๐
27
First-Order Hold Idea: Given the sampled data ๐ ๐๐ , ๐=0,1,โฆ, reconstruct the signal between sampling times by extrapolating two previous data ๐ ๐ก =๐ ๐๐ + ๐ ๐๐ โ๐ ๐โ1 ๐ ๐ ๐กโ๐๐ , ๐๐โค๐ก< ๐+1 ๐ First-order hold is causal
28
Transfer Function of First-Order Hold
Impulse response 2 1 2๐ ๐ โ1 โ ๐ก =1 ๐ก + ๐ก ๐ โ
1 ๐ก โ2โ
1 ๐กโ๐ โ 2 ๐กโ๐ ๐ 1 ๐กโ๐ +1 ๐กโ2๐ + ๐กโ2๐ ๐ โ
1 ๐กโ2๐ โ ๐บ โ1 ๐ = 1+๐๐ ๐ 1โ ๐ โ๐๐ ๐ 2
29
Fractional-Order Holds
๐ ๐ก =๐ ๐๐ +๐ ๐ ๐๐ โ๐ ๐โ1 ๐ ๐ ๐กโ๐๐ , ๐๐โค๐ก< ๐+1 ๐ where the parameter ๐โ[0,1] Impulse response 2 1 2๐ ๐ โ1 ๐บ โ๐ ๐ = 1โ๐ ๐ โ๐๐ 1โ ๐ โ๐๐ ๐ + ๐ ๐ ๐ โ ๐ โ๐๐ 2
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.