Download presentation
Presentation is loading. Please wait.
Published byEgbert Haynes Modified over 8 years ago
1
Cosmological constraints on neutrino mass Francesco De Bernardis University of Rome “Sapienza” Incontro Nazionale Iniziative di Fisica Astroparticellare Frascati – 22/23 Giugno 2010
2
Matter: Cosmic balance
3
Neutrino masses from cosmology - Cosmology is sensitive to absolute neutrino mass. - Constraints from Cosmology are stronger than those from particle physics even if indirect and model dependent: CMB+LRG+Sne+HST CMB+LSS+BAOs+SNe+Ly- E.Komatsu et al. 2010 G.L.Fogli et al.,Phys.Rev.D75:053001, 2007
4
Neutrino mass effect on Cosmology is connected mainly to the free-streaming that cause neutrino to erase their density perturbations on scales smaller than the free-streaming length. Because of free streaming massive neutrinos are a matter component that doesn’t contribute to clustering on small scales… Lesgourgues, Pastor 2006 Massive neutrinos and Cosmological Observables Free streaming
5
Massive neutrinos and Cosmological Observables- Matter power spectrum As a consequence of free-streamingneutrino mass leave a distinctive imprint on clustering of structure. Effects of free streaming are clearly visible in the statistical properties of matter distribution.
6
Halo Model The clustering of galaxies is biased with respect to that of dark matter. - Galaxies form inside dark matter halos. A galaxy of luminosity L can form in halos of mass M with probability given by. - The halo distribution itself is biased with respect to dark matter: Halo bias:. - The bias of galaxies depends on their luminosity, with more luminous galaxies being more clustered*: * 2dF: Morger et al, MNRAS 328,64, 2001 SDSS:Zehavi et al,ApJ 571, 172 (2002)
7
Halo Model The halo bias can be calculated for a given cosmological model: - The probability distribution can be extimated by galaxy-galaxy lensing or galaxy luminosity function. - We don’t know the luminosity L * of the unbiased galaxies (b=1): Sheth, Mo, Tormen, MNRAS, 323 (2001)
8
Sloan Digital Sky Survey DEEP2 Subaru Deep Field Dataset and analysis Cooray, MNRAS 365:842-866 (2006) Cooray, Ouchi, MNRAS 369:1869-1879 (2006) Davis, M. et al. 2003, SPIE, 4834, 161 Miyazaki, S. et al. 2002, PASJ, 54, 833 Seljak et al., Phys.Rev.D71:043511,2005 www.sdss.org
9
b * =b * (z): we don’t know b * ; we treat it as a free parameter for each redshift. Dataset and analysis - Analysis of WMAP5 CMB data, P(k) shape from SDSS + b(L) data. De Bernardis F., Serra P., Cooray A., Melchiorri A.- Phys.Rev.D78:083535,2008 – arXiv:0809.1095 Z=0.05 Z=1.0 Z=3.8
10
b * =b * (z): we don’t know L * ; we treat it as a free parameter for each redshift. Dataset and analysis - Analysis of WMAP5 CMB data, P(k) shape from SDSS + b(L) data. De Bernardis F., Serra P., Cooray A., Melchiorri A.- Phys.Rev.D78:083535,2008 – arXiv:0809.1095 Note that WMPA5+SDSS+2dF+SNe gives: (Komatsu et al. Astrophys.J.Suppl.180:330-376,2009)
11
Dataset and analysis Structure formation depends also on dark energy equation of state: there is a degeneracy with neutrino mass. De Bernardis F., Serra P., Cooray A., Melchiorri A.- Phys.Rev.D78:083535,2008 – arXiv:0809.1095
12
Dataset and analysis The degeneracy can be partially broken adding more datasets: - HST: Hubble Space Telescope prior on H 0 - Sne: luminosity distance measurements from Supernovae Ia - ACBAR: CMB data from Arcminute Cosmology Bolometer Receiver WMAP+SDSS+b(z) +ACBAR+HST+Sne De Bernardis F., Serra P., Cooray A., Melchiorri A.- Phys.Rev.D78:083535,2008 – arXiv:0809.1095
13
Conclusion: Comparison to other cosmological results
14
END
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.