Download presentation
Presentation is loading. Please wait.
Published byJordan Dominic Blair Modified over 8 years ago
1
Challenges and solutions for Impedance measurements Guillaume Granet FE specialist April 2014 1 Agilent Technologies
2
Agenda April 2014 Agilent Technologies 2 Introduction Impedance Basics & Measurement Methods LCR Meters Impedance Analyzers Accessories/test-fixtures Vector Network Analyzers E5061B VNA as Impedance Analyzer Reference Documents + Q&A
3
Impedance Measurement Applications April 2014 Agilent Technologies 3
4
Solutions for measuring impedance April 2014 Agilent Technologies 4 LCR MetersRF LCR Meters VNAZA
5
Agenda April 2014 Agilent Technologies 5 Introduction Impedance Basics & Measurement Methods LCR Meters Impedance Analyzers Accessories/test-fixtures Vector Network Analyzers E5061B VNA as Impedance Analyzer Reference Documents + Q&A
6
Impedance April 2014 Agilent Technologies 6 Z: total opposition, a device or circuit offers to the flow of AC Z = R + jX (rectangular-coord) Z = |Z| (polar form) R = |Z| cos X = |Z| sin |Z| = R 2 + X 2 = tan -1 (X/R) Unit of impedance: ohm ( )
7
Series and parallel Combinations April 2014 Agilent Technologies 7 Unit of admittance: Siemens (S) Real and imaginary components are connected in series Z = R + jX (Impedance is easier to express) Y = G + jB (Admittance is easier) R jX G jB RjX (Impedance is too complex) R + jX jRX = RX 2 R2XR2X + j Z = R 2 + X 2 Real and imaginary components are connected in parallel
8
Inductive and Capacitive Reactance April 2014 Agilent Technologies 8 L (Inductance) C (Capacitance) X L = 2 fL = L CC XCXC = 2 fC 1 = 1 RjX L R -jX C Q = quality factor (a)Inductive vector on impedance plane (b) Capacitive vector on impedance plane XLXL R = -XC-XC R = = tan Z jX L R Z -jX C R tan =D dissipation factor = 1 Q = : Angular frequency (= 2 f)
9
Parasitics April 2014 Agilent Technologies 9
10
Series and Parallel Models April 2014 Agilent Technologies 10
11
Relationship between Series and Parallel mode April 2014 Agilent Technologies 11
12
Component dependency factors April 2014 Agilent Technologies 12 Measurement conditions that determine the measured impedance value Effects depend on component materials and manufacturing processes Four major factors: o Test signal frequency o Test signal level o DC voltage and current bias o Environment
13
X versus test Signal Frequency April 2014 Agilent Technologies 13 |X| Frequency ( ) X L = L X C = 1 CC Capacitor Resonant Frequency X C = X L LC
14
Example Capacitor Resonance April 2014 Agilent Technologies 14
15
C versus test signal Level April 2014 Agilent Technologies 15
16
L versus DC current Bias April 2014 Agilent Technologies 16 LL 0 DC bias current DC bias current dependency of cored inductors Inductance roll-off due to magnetic saturation of inductor core
17
C versus temperature April 2014 Agilent Technologies 17 CC 0 High K Mid K Temperature ( C) | 25 Temperature dependency of ceramic capacitors for different K values K: Dielectric Constant
18
Agenda April 2014 Agilent Technologies 18 Introduction Impedance Basics & Measurement Methods LCR Meters Impedance Analyzers Accessories/test-fixtures Vector Network Analyzers E5061B VNA as Impedance Analyzer Reference Documents + Q&A
19
Solutions for measuring impedance April 2014 Agilent Technologies 19 LCR MetersRF LCR Meters VNAZA
20
Auto-Balancing Bridge method April 2014 Agilent Technologies 20 V - + 2 V 1 DUT V 2 = Z = V1V1 IrIr = V 1 R r V2V2 HIGH LOW R r I r Virtual ground (driven at 0 V) I I = I r - I r R r - Signal Source Measurement Principle
21
RF I-V method April 2014 Agilent Technologies 21 Z x = = ( - 1) V R V v I 2 V i ViVi VvVv R/2 R DUT Voltage detection Current detection Test Head (High-Impedance type) Z x V I R R = 50 Signal Source Measurement Principle
22
Network analysis method April 2014 Agilent Technologies 22 DUT VrVr VrVr V INC Z X - Z 0 = = Z X + Z 0 V INC ZXZX V Incident Signal Reflected Signal Directional Bridge or Coupler OSC V V INC VrVr Zo: 50 or 75 Measurement Principle
23
Summary of Measurement Methods April 2014 Agilent Technologies 23 Method Frequency Range Impedance Range Terminal Connections # of Ports 1 m Z 100 M (10% acc) 0.2 Z 20 k (10% acc) Z Z 0 f 300 kHz 1 MHz f 3 GHz 20 f 120 MHz Network Analysis RF I-V Auto- Balancing Bridge 7 mm, N-type 7 mm 4-terminal pair, BNC N 1 1 1 Impedance ( ) Frequency (Hz) Network An. Auto-Balancing Bridge RF I-V
24
E4982A precision LCR meter Vector Network Analyzers for measuring Impedance April 2014 Agilent Technologies 24 4294A Precision impedance analyzer E4980A precision LCR meter E5071C ENA Network Analyzer E4991A RF impedance/material analyzer E4981A Capacitance meter LCR meterImpedance AnalyzerNetwork Analyzer E5061B ENA LF Network Analyzer High accuracy and wide impedance range HF and RF Variety of fixture selections Lower frequency range is limited by the transformer used in the test head RF I-V Covers highest frequencies High accuracy around the characteristic impedance (Z0) Narrow impedance measurement range Low accuracy in Q (D) measurement Network Analysis Auto-Balancing Bridge Wide frequency coverage (LF to HF) High accuracy over a wide impedance range Variety of fixture selections Higher frequency range not available
25
Vector Network Analyzers Z accuracy/frequency April 2014 Agilent Technologies 25 Impedance (Ω) Frequency (Hz) Auto-Balancing Bridge 100M 10M 1M 100k 10k 1k 100 10 1 100m 10m 1m 10 100 1k 10k 100k 1M 10M 100M 1G 10G RF I-V Network Analysis 10% accuracy range for each measurement technique 4294A E4980A/ALE4981A E4991A E4982A E5061BE5071C Note: PNA Network Analyzer covers 300 kHz to 1.1 THz
26
Agenda April 2014 Agilent Technologies 26 Introduction Impedance Basics & Measurement Methods LCR Meters Impedance Analyzers Accessories/test-fixtures Vector Network Analyzers E5061B VNA as Impedance Analyzer Reference Documents + Q&A
27
LCR meters overwiew April 2014 Agilent Technologies 27 Frequency (Hz) 20 Hz – 2 MHz 1 MHz – 3 GHz 120 Hz, 1 kHz, 1 MHz E4980A precision LCR meter E4981A capacitance meter E4982A LCR meter –Spot frequency measurement –Numeric only display –Low cost –High speed –Application specific E4982A Measurement DisplayE4980A Measurement Display 20 Hz – 300 kHz/500 kHz/1 MHz E4980AL precision LCR meter
28
Impedance analysers overwiew April 2014 Agilent Technologies 28 Frequency (Hz) 10 100 1k10k 100k 1M 10M 100M 1G 10G –Sweeps parameter, displays graphics Frequency DC Bias AC level –Use model Frequency characteristics analysis Resonant analysis Circuit modeling 40 Hz – 110 MHz 1 MHz – 3 GHz 4294A precision impedance analyzer E4991A RF impedance/material analyzer
29
Summary Impedance analyser/LCR meter April 2014 Agilent Technologies 29 Impedance Analyzer LCR Meter Full measurement conditions Freq/Osc/DC bias sweep Wide frequency coverage Versatile analysis capability Graphic display Measurement traces Suitable for deep evaluation or multipurpose use Suitable for simple testing Limited measurement conditions No or limited sweep Spot/multiple frequencies Limited analysis capability GO/NO GO testing Numerical display Only numbers displayed
30
Agenda April 2014 Agilent Technologies 30 Introduction Impedance Basics & Measurement Methods LCR Meters Impedance Analyzers Accessories/test-fixtures Vector Network Analyzers E5061B VNA as Impedance Analyzer Reference Documents + Q&A
31
Accessories introduction April 2014 Agilent Technologies 31 –MUST be used to connect DUTs Fixtures, Probes Test leads DC bias Cal std… –Benefits of Agilent Accessories Minimum residual error for better accuracy Clearly defined error compensation for error correction Strict measurement specifications
32
Accessories portfolio April 2014 Agilent Technologies 32
33
Accessories top 3 fixtures for auto balancing bridges instruments April 2014 Agilent Technologies 33 16334A SMD/chip Tweezers Frequency: ≤15 MHz Maximum dc bias: ±42 V Applicable SMD size: Minimum 1.6 (L) ´ 0.8 (W) mm 16089B Medium Kelvin Clip Leads Clip type: Kelvin alligator clips (small) Frequency: 5 Hz to 100 kHz Maximum dc bias: ±42 V peak Cable length: 0.94 m 16047A Test Fixture (Axial and Radial) Frequency: ≤13 MHz Maximum dc bias: ±35 V Four-terminal (Kelvin) contacts
34
Agenda April 2014 Agilent Technologies 34 Introduction Impedance Basics & Measurement Methods LCR Meters Impedance Analyzers Accessories/test-fixtures Vector Network Analyzers VNA as Impedance Analyzer Reference Documents + Q&A
35
Vector Network Analyzers Z accuracy/frequency April 2014 Agilent Technologies 35 5 Hz to 3 GHz S-parameter test port (5 Hz to 3 GHz, 50 Ω) Gain-phase test port (5 Hz to 30 MHz, Zin=1 MΩ / 50 Ω switchable) Wide dynamic range Built-in DC bias source (0 to ±40 Vdc, max 100 mAdc) Impedance analysis function (Option 005) R T Zin ATT R1 T1 R2 T2 R Zin ATT T LF OUT Port-1Port-2 DC bias source E5061B-3L5 Gain-phase test port (5 Hz to 30 MHz) Zin=1 MΩ #1 or 50 ohm ATT=20 dB or 0 dB Gain-phase test port S-parameter test port
36
E5061B as impedance analyser April 2014 Agilent Technologies 36 Fully supports basic functions of impedance analyzer (ZA) Displays Z parameters Calibration + Fixture compensation Equivalent circuit analysis Covers variety of ZA applications with multiple meas. techniques Advantages of Z measurement with E5061B NA plus ZA in one box Milliohm Z-measurement Very broad freq range Advantages of Z measurement with E5061B NA plus ZA in one box Milliohm Z-measurement Very broad freq range Reflection method (for low to mid-Z) Series-thru method (for mid to high-Z) Shunt-thru method (for very low-Z)
37
E5061B impedance measurement method April 2014 Agilent Technologies 37 Both test ports are available for impedance measurements S-Parameter test portGain-Phase test port S-Parameter 5 Hz - 3 GHz Reflection Series-thru Shunt-thru Gain-Phase 5 Hz - 30 MHz Series-thru Shunt-thru Test port Frequency range Measurement configurations Port 1 Port 2 T LF OUT R
38
Reflection method April 2014 Agilent Technologies 38 Z = 50 x ((1 + S 11 ) / (1 - S 11 )) S-Parameter S 11 VSVS V DUT 0.11101001k10k 50Ω Vector voltage ratio relationship to impedance Mid-Z
39
Series-thu method April 2014 Agilent Technologies 39 Z = (50 x 2) x ((1 - S 21 ) / S 21 ) S-Parameter Gain-Phase S21S21 T/R VI VI Vector voltage ratio relationship to impedance 0.11101001k10k Mid to High-Z
40
Shunt-thru method April 2014 Agilent Technologies 40 Z = (50 / 2) x (S 21 / (1 - S 21 )) S-Parameter Gain-Phase S21S21 T/R VSVS V DUT VSVS 0.11101001k10k Vector voltage ratio relationship to impedance Low to Mid-Z
41
Measurement method & impedance range April 2014 Agilent Technologies 41 Shunt-thru Reflection Series-thru Applicable impedance range Mid Mid - High Low - Mid 100 k10 k1 k1 k100101100 m10 m1 m1 m Configuration Covers wide impedance range: mΩ to 100 kΩ using 3 methods in combination Impedance [ohm]
42
Equivalent circuit analysis April 2014 Agilent Technologies 42 e.g., Ceramic Resonator (Type E circuit) # Equivalent Circut # ----C0---- # -| |- # -L1-C1-R1- Type, E R1, 6.94624374266e+000 L1, 6.79827222119e-003 C1, 2.45000000000e- 011 C0, 3.47238726000e- 010 Simulate = “ON” memory trace Equivalent Circuit Analysis
43
April 2014 Agilent Technologies 43 Calibration and fixture compensation
44
Agenda April 2014 Agilent Technologies 44 Introduction Impedance Basics & Measurement Methods LCR Meters Impedance Analyzers Accessories/test-fixtures Vector Network Analyzers VNA as Impedance Analyzer Reference Documents + Q&A
45
Selection guide April 2014 Agilent Technologies 45 Brief introduction of Agilent LCR and Impedance measurement solution Test accessories / fixtures compatibility chart 5952-1530E: Agilent LCR Meters, Impedance Analyzers, and Test Fixtures Selection Guide
46
Accessories Selection guide April 2014 Agilent Technologies 46 5965-4792E: Accessories Selection Guide For Impedance Measurements Tips for selecting appropriate accessories Detailed information on each accessories
47
Impedance Measurement Handbook April 2014 Agilent Technologies 47 5950-3000; Impedance Measurement Handbook Deep discussion on each measurement method Tips for accurate fixturing
48
Thank You! January 2014 Agilent Technologies 48
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.