Download presentation
Presentation is loading. Please wait.
Published byCecil Carson Modified over 8 years ago
1
ENGR36_Flat_n_Belt_Friction_Balance_H13e_P8_133.pptx 1 Bruce Mayer, PE Engineering-36: Engineering Mechanics - Statics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege.edu Engineering 25 Tutorial: QtrCirc Submerged Dam
2
ENGR36_Flat_n_Belt_Friction_Balance_H13e_P8_133.pptx 2 Bruce Mayer, PE Engineering-36: Engineering Mechanics - Statics Problem Determine the Resultant Point-Force and its Location on the Dam Face (Center of Pressure) that are Equivalent to the Water Pressure acting on ¼-Circle Surface AB
3
ENGR36_Flat_n_Belt_Friction_Balance_H13e_P8_133.pptx 3 Bruce Mayer, PE Engineering-36: Engineering Mechanics - Statics
4
ENGR36_Flat_n_Belt_Friction_Balance_H13e_P8_133.pptx 4 Bruce Mayer, PE Engineering-36: Engineering Mechanics - Statics MATLAB Code % Bruce Mayer, PE % ENGR36 07Dec14 % ENGR36_Submerged_Dam_1412.m % clear; clf; clc; % G = 62.4; r = 6; b = 10; Rx = 3*G*r*b K = 1-pi/4; Ry = G*r^2*b*K Fs = 3*G*r*b FB = 6*G*r*b W = pi*G*b*r^2/4 SumM = @(u) FB*r/2 + Rx*sqrt(r^2- u.^2) - Fs*r/3 - 4*W*r/(3*pi) - Ry*u fplot(SumM,[0,6]), grid R = norm([Rx,Ry]) T = sqrt(1/(1+4*K^2)) X = r*T Y = sqrt(r^2 - X^2)
5
ENGR36_Flat_n_Belt_Friction_Balance_H13e_P8_133.pptx 5 Bruce Mayer, PE Engineering-36: Engineering Mechanics - Statics
6
ENGR36_Flat_n_Belt_Friction_Balance_H13e_P8_133.pptx 6 Bruce Mayer, PE Engineering-36: Engineering Mechanics - Statics
7
ENGR36_Flat_n_Belt_Friction_Balance_H13e_P8_133.pptx 7 Bruce Mayer, PE Engineering-36: Engineering Mechanics - Statics
8
ENGR36_Flat_n_Belt_Friction_Balance_H13e_P8_133.pptx 8 Bruce Mayer, PE Engineering-36: Engineering Mechanics - Statics
9
ENGR36_Flat_n_Belt_Friction_Balance_H13e_P8_133.pptx 9 Bruce Mayer, PE Engineering-36: Engineering Mechanics - Statics
10
ENGR36_Flat_n_Belt_Friction_Balance_H13e_P8_133.pptx 10 Bruce Mayer, PE Engineering-36: Engineering Mechanics - Statics
11
ENGR36_Flat_n_Belt_Friction_Balance_H13e_P8_133.pptx 11 Bruce Mayer, PE Engineering-36: Engineering Mechanics - Statics
12
ENGR36_Flat_n_Belt_Friction_Balance_H13e_P8_133.pptx 12 Bruce Mayer, PE Engineering-36: Engineering Mechanics - Statics
13
ENGR36_Flat_n_Belt_Friction_Balance_H13e_P8_133.pptx 13 Bruce Mayer, PE Engineering-36: Engineering Mechanics - Statics MuPAD integration int(cos(q), q) int(sin(u)*cos(u), u) Fx = int(cos(z), z=0..PI/2)- int(sin(z)*cos(z), z=0..PI/2) int(sin(q), q) int(sin(u)*sin(u), u) Fy = int(sin(z), z=0..PI/2)- int(sin(z)*sin(z), z=0..PI/2)
14
ENGR36_Flat_n_Belt_Friction_Balance_H13e_P8_133.pptx 14 Bruce Mayer, PE Engineering-36: Engineering Mechanics - Statics
15
ENGR36_Flat_n_Belt_Friction_Balance_H13e_P8_133.pptx 15 Bruce Mayer, PE Engineering-36: Engineering Mechanics - Statics
16
ENGR36_Flat_n_Belt_Friction_Balance_H13e_P8_133.pptx 16 Bruce Mayer, PE Engineering-36: Engineering Mechanics - Statics
17
ENGR36_Flat_n_Belt_Friction_Balance_H13e_P8_133.pptx 17 Bruce Mayer, PE Engineering-36: Engineering Mechanics - Statics
18
ENGR36_Flat_n_Belt_Friction_Balance_H13e_P8_133.pptx 18 Bruce Mayer, PE Engineering-36: Engineering Mechanics - Statics
19
ENGR36_Flat_n_Belt_Friction_Balance_H13e_P8_133.pptx 19 Bruce Mayer, PE Engineering-36: Engineering Mechanics - Statics
20
ENGR36_Flat_n_Belt_Friction_Balance_H13e_P8_133.pptx 20 Bruce Mayer, PE Engineering-36: Engineering Mechanics - Statics
21
ENGR36_Flat_n_Belt_Friction_Balance_H13e_P8_133.pptx 21 Bruce Mayer, PE Engineering-36: Engineering Mechanics - Statics
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.