Presentation is loading. Please wait.

Presentation is loading. Please wait.

Logarithmic Functions Mrs. King Pre-Calculus. What are logarithms? The inverse of the exponential function!

Similar presentations


Presentation on theme: "Logarithmic Functions Mrs. King Pre-Calculus. What are logarithms? The inverse of the exponential function!"— Presentation transcript:

1 Logarithmic Functions Mrs. King Pre-Calculus

2 What are logarithms? The inverse of the exponential function!

3 Graph: Picture from: http://www.regentsprep.org/Regents/math/algtrig/ATP8b/logFunction.htm Regardless of the base, the exponential graph goes through the point (0,1). Therefore, regardless of the base, the logarithmic graph goes through the point (1,0).

4 Definitions of Logarithms The logarithmic function is the function, where b is any number such that is equivalent to The function is read "log base b of x".

5 10 3 = 1000log 10 1000 = 3 2 4 = 16log 2 16 = 4 10 4 = 10,000log 10 10000 = 4 3 2 = 9log 3 9 = 2 4 2 = 16log 4 16 = 2 10 -2 = 0.01log 10 0.01 = -2 p = q 2 log q p = 2 x y = 2log x 2 = y p q = rlog p r = q pifactory.net/catalog/files/teacher_resources/.../logarithms_01.ppt Rewrite using logarithms

6 10 3 = 1000log 10 1000 = 3 2 4 = 16log 2 16 = 4 10 4 = 10,000log 10 10000 = 4 3 2 = 9log 3 9 = 2 4 2 = 16log 4 16 = 2 10 -2 = 0.01log 10 0.01 = -2 p = q 2 log q p = 2 x y = 2log x 2 = y p q = rlog p r = q pifactory.net/catalog/files/teacher_resources/.../logarithms_01.ppt Rewrite using logarithms

7 10 3 = 1000log 10 1000 = 3 2 4 = 16log 2 16 = 4 10 4 = 10,000log 10 10000 = 4 3 2 = 9log 3 9 = 2 4 2 = 16log 4 16 = 2 10 -2 = 0.01log 10 0.01 = -2 p = q 2 log q p = 2 x y = 2log x 2 = y p q = rlog p r = q pifactory.net/catalog/files/teacher_resources/.../logarithms_01.ppt Rewrite using logarithms

8 10 3 = 1000log 10 1000 = 3 2 4 = 16log 2 16 = 4 10 4 = 10,000log 10 10000 = 4 3 2 = 9log 3 9 = 2 4 2 = 16log 4 16 = 2 10 -2 = 0.01log 10 0.01 = -2 p = q 2 log q p = 2 x y = 2log x 2 = y p q = rlog p r = q pifactory.net/catalog/files/teacher_resources/.../logarithms_01.ppt Rewrite using logarithms

9 10 3 = 1000log 10 1000 = 3 2 4 = 16log 2 16 = 4 10 4 = 10,000log 10 10000 = 4 3 2 = 9log 3 9 = 2 4 2 = 16log 4 16 = 2 10 -2 = 0.01log 10 0.01 = -2 p = q 2 log q p = 2 x y = 2log x 2 = y p q = rlog p r = q pifactory.net/catalog/files/teacher_resources/.../logarithms_01.ppt Rewrite using logarithms

10 10 3 = 1000log 10 1000 = 3 2 4 = 16log 2 16 = 4 10 4 = 10,000log 10 10000 = 4 3 2 = 9log 3 9 = 2 4 2 = 16log 4 16 = 2 10 -2 = 0.01log 10 0.01 = -2 p = q 2 log q p = 2 x y = 2log x 2 = y p q = rlog p r = q pifactory.net/catalog/files/teacher_resources/.../logarithms_01.ppt Rewrite using logarithms

11 10 3 = 1000log 10 1000 = 3 2 4 = 16log 2 16 = 4 10 4 = 10,000log 10 10000 = 4 3 2 = 9log 3 9 = 2 4 2 = 16log 4 16 = 2 10 -2 = 0.01log 10 0.01 = -2 p = q 2 log q p = 2 x y = 2log x 2 = y p q = rlog p r = q pifactory.net/catalog/files/teacher_resources/.../logarithms_01.ppt Rewrite using logarithms

12 10 3 = 1000log 10 1000 = 3 2 4 = 16log 2 16 = 4 10 4 = 10,000log 10 10000 = 4 3 2 = 9log 3 9 = 2 4 2 = 16log 4 16 = 2 10 -2 = 0.01log 10 0.01 = -2 p = q 2 log q p = 2 x y = 2log x 2 = y p q = rlog p r = q pifactory.net/catalog/files/teacher_resources/.../logarithms_01.ppt Rewrite using logarithms

13 10 3 = 1000log 10 1000 = 3 2 4 = 16log 2 16 = 4 10 4 = 10,000log 10 10000 = 4 3 2 = 9log 3 9 = 2 4 2 = 16log 4 16 = 2 10 -2 = 0.01log 10 0.01 = -2 p = q 2 log q p = 2 x y = 2log x 2 = y p q = rlog p r = q pifactory.net/catalog/files/teacher_resources/.../logarithms_01.ppt Rewrite using logarithms

14 10 3 = 1000log 10 1000 = 3 2 4 = 16log 2 16 = 4 10 4 = 10,000log 10 10000 = 4 3 2 = 9log 3 9 = 2 4 2 = 16log 4 16 = 2 10 -2 = 0.01log 10 0.01 = -2 p = q 2 log q p = 2 x y = 2log x 2 = y p q = rlog p r = q pifactory.net/catalog/files/teacher_resources/.../logarithms_01.ppt Rewrite using logarithms

15 log 4 64 = 34 3 = 64 log 3 27 = 33 3 = 27 log 36 6 = 1 / 2 36 1/2 = 6 log 12 1= 012 0 = 1 log x y = zx z = y log a 5 = ba b = 5 log p q = rp r = q c = log a bb = a c pifactory.net/catalog/files/teacher_resources/.../logarithms_01.ppt Rewrite using exponential notation

16 log 4 64 = 34 3 = 64 log 3 27 = 33 3 = 27 log 36 6 = 1 / 2 36 1/2 = 6 log 12 1= 012 0 = 1 log x y = zx z = y log a 5 = ba b = 5 log p q = rp r = q c = log a bb = a c pifactory.net/catalog/files/teacher_resources/.../logarithms_01.ppt Rewrite using exponential notation

17 log 4 64 = 34 3 = 64 log 3 27 = 33 3 = 27 log 36 6 = 1 / 2 36 1/2 = 6 log 12 1= 012 0 = 1 log x y = zx z = y log a 5 = ba b = 5 log p q = rp r = q c = log a bb = a c pifactory.net/catalog/files/teacher_resources/.../logarithms_01.ppt Rewrite using exponential notation

18 log 4 64 = 34 3 = 64 log 3 27 = 33 3 = 27 log 36 6 = 1 / 2 36 1/2 = 6 log 12 1= 012 0 = 1 log x y = zx z = y log a 5 = ba b = 5 log p q = rp r = q c = log a bb = a c pifactory.net/catalog/files/teacher_resources/.../logarithms_01.ppt Rewrite using exponential notation

19 log 4 64 = 34 3 = 64 log 3 27 = 33 3 = 27 log 36 6 = 1 / 2 36 1/2 = 6 log 12 1= 012 0 = 1 log x y = zx z = y log a 5 = ba b = 5 log p q = rp r = q c = log a bb = a c pifactory.net/catalog/files/teacher_resources/.../logarithms_01.ppt Rewrite using exponential notation

20 log 4 64 = 34 3 = 64 log 3 27 = 33 3 = 27 log 36 6 = 1 / 2 36 1/2 = 6 log 12 1= 012 0 = 1 log x y = zx z = y log a 5 = ba b = 5 log p q = rp r = q c = log a bb = a c pifactory.net/catalog/files/teacher_resources/.../logarithms_01.ppt Rewrite using exponential notation

21 log 4 64 = 34 3 = 64 log 3 27 = 33 3 = 27 log 36 6 = 1 / 2 36 1/2 = 6 log 12 1= 012 0 = 1 log x y = zx z = y log a 5 = ba b = 5 log p q = rp r = q c = log a bb = a c pifactory.net/catalog/files/teacher_resources/.../logarithms_01.ppt Rewrite using exponential notation

22 log 4 64 = 34 3 = 64 log 3 27 = 33 3 = 27 log 36 6 = 1 / 2 36 1/2 = 6 log 12 1= 012 0 = 1 log x y = zx z = y log a 5 = ba b = 5 log p q = rp r = q c = log a bb = a c pifactory.net/catalog/files/teacher_resources/.../logarithms_01.ppt Rewrite using exponential notation

23 log 4 64 = 34 3 = 64 log 3 27 = 33 3 = 27 log 36 6 = 1 / 2 36 1/2 = 6 log 12 1= 012 0 = 1 log x y = zx z = y log a 5 = ba b = 5 log p q = rp r = q c = log a bb = a c pifactory.net/catalog/files/teacher_resources/.../logarithms_01.ppt Rewrite using exponential notation

24 The Change of Base Formula

25 Examples…watch your parenthesis!


Download ppt "Logarithmic Functions Mrs. King Pre-Calculus. What are logarithms? The inverse of the exponential function!"

Similar presentations


Ads by Google