Presentation is loading. Please wait.

Presentation is loading. Please wait.

An Overview of the Tropical Tropopause Layer

Similar presentations


Presentation on theme: "An Overview of the Tropical Tropopause Layer"— Presentation transcript:

1 An Overview of the Tropical Tropopause Layer
Andrew Gettelman National Center for Atmospheric Research (NCAR), Boulder, CO

2 Outline Road Map Motivation Definition of the TTL & Overview
Radiation Balance of the TTL Key Questions

3 Our ‘Tour’ (2 days) Basics Clouds and Convection (Pfister)
Water Vapor (Randel) TTL Transport & Waves (Fujiwara) Trace Species & Chemistry (Thompson) Stratospheric Dynamics (Alexander) Techniques Aircraft Observations (Rosenlof) Ground Based Observations (Hasebe/Shibata) Satellites (Shiotani) Modeling (Jensen) Data Assimilation (Miyazaki)

4 TTL Impacts stratospheric composition
See: Stratosphere: Alexander Talk Brewer, 1949, QJRMS

5 TTL Transport: Water Vapor
Rosenlof, 2003 Randel Talk: Water Vapor; Shiotani: Satellites

6 Impact of stratospheric H2O
Randel H2O Talk; Gettelman: Radiation Stratospheric H2O changes are an extra radiative forcing Solomon et al 2010

7 TTL Transport: Short Lived Species
Observations show additional Bromine in the Lower Stratosphere from Very Short Lived Species (VSLS): impacts ozone: Thompson Chem Talk WMO2007, Chapter 2

8 Climate Trends are seen in TTL
Seidel et al 2008, Nat. Geosci. TTL

9 Defining the TTL

10 Profiles: Extratropics
Boulder, 40N Tropopause relative Sharp jump in O3 starts right below tropopause Ground Based Observations (Hasebe/Shibata) Data: Vömel, Plot: Pan, in Gettelman et al 2011., Rev Geopys

11 Tropical Profiles Sharp ‘Cold Point’ Ozone increases 3km below it
What is going on? Longer transport times, changes in balance of processes TTL Soundings: Samoa, March 1996 Ground Based Observations (Hasebe/Shibata) Folkins et al 1999

12 Idealized T Profiles e=const Dry Adiabat Rad Equil T=const
Gettelman & Forster 2002, JMSJ e=const Dry Adiabat Rad Equil T=const

13 W. Pacific T Soundings Koror: 7N 135E Gettelman & Forster 2002, JMSJ

14 TTL & Convective Outflow
Lapse Rate (T) Ozone Folkins, JAS, 2002 Thompson: Trace Species and Chemistry

15 Simulating TTL structure
Solid: Sondes Dotted: WACCM Thin Dot: CAM Dashed: CMAM Gray: TTL Avg stations Lapse rate profiles from GCMs: Min O3 similar to Min LR (LRM) Gettelman & Birner, 2007, JGR, Fig 3

16 Tropopause Horizontal Structure
NCEP Reanalysis Seasonal Mean Tropopause Temp (Yes: the temperatures are biased +3K or so. Focus on the gradients) Data Assimilation (Miyazaki)

17 Key TTL Processes Radiation OH Br SO2 O3 PAN Chemistry HNO3
Large Scale Transport Convection Cloud Microphysics Tropical Waves

18 Instantaneous TTL picture is complicated
Satellites (Shiotani); Clouds (Pfister) 3 July :15 UT, Through the Asian Monsoon White: GFS 50km trop Black: GEOS5 trop Wind speed Potential Temperature Pan and Munchak, 2011, JGR, Fig 2

19 TTL ‘Characteristics’
Rev. Geo. 2009

20 Difficulties in Observing the TTL
“The TTL is high”: few available platforms can reach it from the ground “The TTL is low”: tough to do radiative transfer remotely (especially from space) Sharp gradients Clouds and other ‘radiative obscurities’ Limits observations for analysis (assimilation)

21 Tropical Tropopause Layer
Radiation (Gettelman) ; Transport (Fujiwara) Gettelman & Forster 2002

22 Convection Clouds are Complicated! (Pfister)

23 Convection in the TTL (TRMM)
Clouds and Convection (Pfister) Liu and Zipser, 2005, JGR, Fig 2

24 Clouds above the Tropopause: 1330LT
Pan & Munchak, 2011, Fig 7

25 Clouds at the tropopause
Clouds and Convection (Pfister) Yang et al 2010, JGR, fig 3

26 Convective Turnover Time
CPT Gz min Qclear=0 TTL tc~2yrs tc~6-9mo tc<1mo Gettelman et al 2002, JGR, Fig 9

27 Simulating TTL Clouds (Global Models)
Models do ‘okay’ on gross measures of cloud occurrence. Not for the right reasons… Modeling: Jensen Gettelman & Birner, 2007, JGR, Figure 10

28 TTL Ice Super-saturation
Ice clouds do not form at 100% RH. Need significant ice supersaturation. High TTL supersaturations observed. Ice formation mechanisms uncertain. Aircraft Observations (Rosenlof) PDF from Aircraft & Satellites: E. Pac, Jan 2004

29 Large Scale TTL Transport
Water Vapor (Randel); TTL Transport & Waves (Fujiwara) Randel et al 2001, fig 6 HALOE H2O Convection Frequency (0.5, 1, 5, 10%) Tropopause ECMWF Temperatures (Shading)

30 Interannual Variations of Temp & H2O
Temperature and Water Vapor are Coupled Fueglistaler & Haynes, 2005, JGR, fig2

31 Tropical Waves, Clouds & T
2000, GRL Boehm & Verlinde, 2000 GRL Temp variations (- +) Cloud Lidar Waves in the TTL alter temperatures, water vapor and clouds TTL Transport & Waves (Fujiwara)

32 Chemistry in the TTL Chemistry affects aerosols
Aerosols affect cloud microphysics and H2O vapor TTL clouds and H2O affect chemistry UTLS H2O affects Ozone (through HOx)

33 “One Atmosphere – One Photochemistry”
Traditional View: [HO2] & [OH] produced by O1D+H2O and CH4 oxidation Real world: UT [HO2] & [OH] also produced by photolysis of precursors (acetone and peroxides) lofted from the surface NO is important for regulation of HOx (via [HO2]/[OH] ratio) and controls tropospheric ozone production efficiency Bromine matters for ozone in LS: precursors may transit TTL Ozone Loss by Process 47°N, March 1993 Standard view of ozone loss in UT/LS: “HOx rules” Bromine might be important in TTL! Trace Species & Chemistry (Thompson) From Salawich

34 Simulated TTL Structure
Modeling (Jensen) Simulated TTL Structure Gettelman & Birner, 2007, JGR, Fig 5 Contours: CMAM GCM, Squares: Sondes

35 Brief Summary…. TTL is a transition region
Important for Tropospheric Climate and Stratospheric Chemistry Complex interplay of processes Have some understanding of connections Observations remain a challenge Can represent the TTL (broadly) in global models Now, on to the Radiative Balance….

36 Radiation Balance of the TTL
LW SW Net Gettelman et al 2004, JGR What drives zero heating level? (LZH or Qclr=0)

37 Gas Contributions TTL LZH occurs when (A) H2O tails off and (B) O3 increases. CO2 trop

38 Variations in Qclear=0 SZA: Avg SZA Noon ± 1s Qclear=0 location: 15km, 125hPa, 200ºK, 360K (q) Profiles vary from average by ±400m (1s) Different Models: ±300m, Season/Location: ±500m Diurnal Variation: 1-2 km (lower for low SZA) Clouds raise Qclear=0 by up to 1km (more LW cooling)

39 Tropical mean Heating Rates
Impact of Clouds Tropical mean Heating Rates All Sky ISCCP (mean) All Sky ISCCP + LIDAR Clear Sky Mean Clear Sky T & O3 Corti et al 2005, GRL

40 TTL Profiles of Cloud Heating
SW LW Net Yang et al 2010, JGR, Fig 10

41 Simulated TTL Radative Balance
TTL Thermal Budget is a balance between latent heat (COND) and radiative cooling (Q-NET) below Qclr=0 and rad heating and dynamics above * Gettelman & Birner, 2007, JGR, Fig 4

42 Radiation balance of the TTL
H2O dominates up to the TTL CO2 important right at the tropopause (and above) O3 above the tropopause Heating drives transport in the TTL Clouds affect these heating rates: clouds in the TTL heat, lowers Q=0 level. Clouds below increase LW cooling above Raises Q=0 level LW SW Net Note: TTL vertical motion and transport is not strictly radiative. Large scale dynamics matters. Upward vertical motion can exist below Q=0 level

43 Key Questions: Rad Balance
What is the role of clouds in the heat budget of the TTL? Especially: cirrus and thin cirrus How does the radiative role of TTL clouds in change in space and with season? How do small scale motions & waves interact with radiation? How will TTL radiative properties change with anthropogenic forcing?

44 References (1) 1. A. W. Brewer. Evidence for a world circulation provided by the measurements of helium and water vapor distribution in the stratosphere. Q. J. R. Meteorol. Soc., 75: , K. H. Rosenlof. How water enters the stratosphere. Science, 302: , Solomon, S., K. H. Rosenlof, R. W. Portmann, J. S. Daniel, S. M. Davis, T. J. Sanford, and G.‐K. Plattner (2010), Contributions of stratospheric water vapor to decadal changes in the rate of global warming, Science, 327(5970), 1219–1223, doi: /science World Meteorological Organization (WMO) (2007), Scientific Assessment of Ozone Depletion: 2006, WMO Rep. 50, World Meteorol. Org., Geneva. 7. Seidel, D. J., Q. Fu, W. J. Randel, and T. Reichler (2008), Widening of the tropical belt in a changing climate, Nat. Geosci., 1, 21–24, doi: /ngeo Gettelman, A., P. Hoor, L. L. Pan, W. J. Randel, M. I. Hegglin, and T. Birner (2011), The extratropical upper troposphere and lower stratosphere, Rev. Geophys., 49, RG3003, doi: /2011RG I. Folkins, M. Loewenstein, J. Podolske, S. J. Oltmans, and M. Proffitt. A barrier to vertical mixing at 14 km in the tropics: Evidence from ozonesondes and aircraft measurements. J. Geophys. Res., 104(D18):22,095-22,102, , A. Gettelman and P. M. F. Forster. A climatology of the tropical tropopause layer. J. Met. Soc. Japan, 80(4B): , I. Folkins. Origin of lapse rate changes in the upper tropical troposphere. J. Atmos. Sci., 59: , , 26, 33, 40. A. Gettelman and T. Birner. Insights on tropical tropopause layer processes using global models. J. Geophys. Res., 112(D23104), 2007.

45 References (2) 17. , 23. Pan, L. L., and L. A. Munchak (2011), Relationship of cloud top to the tropopause and jet structure from CALIPSO data, J. Geophys. Res., 116, D12201, doi: /2010JD Fueglistaler, S., A. E. Dessler, T. J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote (2009), The tropical tropopause layer, Rev. Geo- phys., 47, RG1004, doi: /2008RG C. Liu and E. J. Zipser. Global distribution of convection penetrating the tropical tropopause. J. Geophys. Res., 110(D23):D23104, , 39. Yang, Q., Q. Fu, and Y. Hu (2010), Radiative impacts of clouds in the tropical tropopause layer, J. Geophys. Res., 115, D00H12, doi: /2009JD A. Gettelman, M. L. Salby, and F. Sassi. The distribution and influence of convection in the tropical tropopause region. J. Geophys. Res., 107(D10), W. J. Randel, A. Gettelman, F. Wu, J. M. Russell III, J. Zawodny, and S. Oltmans. Seasonal variation of water vapor in the lower stratosphere observed in Halogen Occultation Experiment data. J. Geophys. Res., 106: , S. Fueglistaler and P. H. Haynes. Control of interannual and longer-term variability of stratospheric water vapor. J. Geophys. Res., 110(D08107), December M. T. Boehm and J. Verlinde. Stratospheric influence on upper tropospheric tropical cirrus. Geophys. Res. Lett., 27(19): , ,36,37, 41. A. Gettelman, P. M. F. Forster, M. Fujuwara, Q. Fu, H. Vomel, L. K. Gohar, C. Johanson, and M. Ammeraman. The radiation balance of the tropical tropopause layer. J. Geophys. Res., 109, T. Corti, B. P. Luo, T. Peter, Q. Fu, and H. Vömel. Mean radiative energy balance and vertical mass fluxes in the equatorial upper troposphere and lower stratosphere. Geophys. Res. Lett., 32(L06802), 2005.


Download ppt "An Overview of the Tropical Tropopause Layer"

Similar presentations


Ads by Google