Download presentation
Presentation is loading. Please wait.
Published byMabel Sanders Modified over 8 years ago
1
Marianna Testa University of Rome La Sapienza & INFN for the KLOE collaboration “XLIst Rencontres de Moriond: Electroweak Interactions and Unified Theories”, La Thuile 11-18 March 2006 CP/CPT tests at KLOE
2
2 13 e + e b W = m = 1019.4 MeV BR( K 0 K 0 ) ~ 34% ~10 6 neutral kaon pairs per pb -1 produced in an antisymmetric quantum state with J PC = 1 Neutral kaons at a -factory p K = 110 MeV/c S = 6 mm L = 3.5 m The detection of a kaon at large (small) times tags a K S (K L ) possibility to select a pure K S beam (unique at a -factory, not possible at fixed target experiments) K L,S K S,L t1t1 t2t2 t=t 1 - t 2 f2f2 f1f1
3
3 Kaon interferometry: K S K L no simultaneous decays ( t=0) in the same final state due to the destructive quantum interference I( t) (a.u) m from here t2t2 t1t1 t=t 1 -t 2
4
4 KLOE preliminary 380 pb -1 ’01+’02 data Fit with PDG values for S, L : m = (5.34 0.34) × 10 9 hs -1 PDG `04: (5.301 0.016) × 10 9 (h/2 )s -1 Fix m to PDG `04 value, obtain : K S(L) at t 1 K L(S) at t 2 S,L = 0.043 0.008 +0.038 -0.035 0,0 =(0.24 0.010) × 10 -5 +0.21 -0.19 Cf. Bertlmann `99(CPLEAR) 0,0 = 0.4 0.7 S,L = 0.13 +0.16 -0.15 No simultaneous decays K L regeneration on the beam pipe K S K L interference: QM test K L,S K S,L t1t1 t2t2 t=t 1 - t 2 f2f2 f1f1 Data: 7366 evts Fit: 2 /dof = 15.1/22 ζ decoherence parameter basis dependent: K S K L, K 0 K 0 I ( Δt, ) e −ΓL|Δt| + e −ΓS|Δt| − 2(1 − ζ S,L ) e −(ΓS + ΓL)|Δτ|/ 2 cos( ΔmΔt ) t2t2 t1t1 t=t 1 -t 2
5
5 BR K L CP Violation Decay CP violating Related to K BR mmt to 1% using K L beam tagged by K S → 328 pb -1 ’01+’02 data Selection K L vertex reconstructed in DC PID using decays kinematics Fit with MC spectra including radiative processes Normalization using K L events in the same data set
6
6 Preliminary result BR(K L )= (1.963 0.012 0.017) 10 -3 in agreement with KTeV [PRD70 (2004),092006] BR=(1.975 0.012) confirm the discrepancy (4 standard deviations) with PDG04 BR=(2.090 0.025) PDG2004 KTeV KLOE preliminary BR(K L ) 10 -3 1.6 with respect to prediction from Unitarity Triangle, using CP conserving variables UTfit = (2.88 0.43) 10 -3 Using BR(K S ) and L from KLOE and S from PDG04 | = (2.216 0.013) 10 -3 | | PDG04 = (2.280 0.013) 10 -3 BR K L CP Violation (II) 1.5 with respect to prediction from Unitarity Triangle
7
7 Measurements of K S K L observables can be used for the CPT test from unitarity : ff (1 + i tan SW ) [Re i Im ] A*(K S f ) A(K L f ) SS 1 f f K S 00 K S K S kl3 S L B(K L l3) Re Re y i( Im Im x ) S L B(K L l3) (A S +A L )/4 i( Im Im x ) S L K L S L K L CPT test: the Bell-Steinberger relation
8
8 K S K S K S K L K L l K S K L K S SW = (0.759±0.001) CPT test: inputs to the Bell-Steinberger relation S 0.08958 ± 0.00006 ns L = 50.84 ± 0.23ns A L A S K L K L =0.757 ± 0.012 = 0.763 ± 0.014 Im x + = (0.8 ± 0.7) 10 -2 KLOE measurements Im x from a combined fit of KLOE + CPLEAR data
9
9 We get the following results (error contours) on each term of the sum K S 00 K S K S S L B(K L l3) A S +A L )/4 i Im x S L K L S L K L 10 -4 Im Re CPT test: accuracy on i
10
10 Re Im CPLEAR: Re Im CPT test: KLOE result KLOE preliminary: Re Im
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.