Download presentation
Presentation is loading. Please wait.
Published byElfrieda Day Modified over 8 years ago
1
Universiteit Twente Juggling Word Graphs A method for modeling the meaning of sentences using extended knowledge graphs.
2
Overview Introduction Knowledge Graphs Processing Language Syntactic unification Semantic evaluation Semantic unification Results, conclusions, future work ICCS ’02, Borovets
3
Introduction Parlevink: Computer Sciences Computational Language Dialogue systems in virtual environments Faculty of mathematics: Knowledge Graphs Introduction Knowledge Graphs Processing Language Syntactic unification Semantic evaluation Semantic unification Results & conclusions University of Twente
4
Introduction Knowledge Graphs: Theoretical work on models of semantics and their mathematical properties, prof. Hoede et al. Introduction Knowledge Graphs Processing Language Syntactic unification Semantic evaluation Semantic unification Results & conclusions
5
Introduction No linguistics No concrete applications No automatic procedures Introduction Knowledge Graphs Processing Language Syntactic unification Semantic evaluation Semantic unification Results & conclusions
6
Introduction Project: Building a system for automatic processing of Knowledge Graphs in a NLP environment. Introduction Knowledge Graphs Processing Language Syntactic unification Semantic evaluation Semantic unification Results & conclusions
7
Knowledge Graphs Reminder the intensional triangle Introduction Knowledge Graphs Processing Language Syntactic unification Semantic evaluation Semantic unification Results & conclusions Intension house man Ext() Extension Language Intensional semantics Extensional semantics
8
Knowledge Graphs Relations: Abstractions over human thinking Low level: no overlap, not divisible Introduction Knowledge Graphs Processing Language Syntactic unification Semantic evaluation Semantic unification Results & conclusions
9
Knowledge Graphs Link weights describe the relevance of an aspect for: Determining extension of a concept Comparing concepts Introduction Knowledge Graphs Processing Language Syntactic unification Semantic evaluation Semantic unification Results & conclusions
10
Knowledge Graphs Introduction Knowledge Graphs Processing Language Syntactic unification Semantic evaluation Semantic unification Results & conclusions par COLOR ali par ali equ - equ par TIME ali CHANGING COLOR ord ANIMATE ALI CAU Example: painting as “causing a change of color”
11
Introduction Knowledge Graphs Processing Language Syntactic unification Semantic evaluation Semantic unification Results & conclusions Processing Language S NP VP V Grammar Lexicon Parsing
12
Introduction Knowledge Graphs Processing Language Syntactic unification Semantic evaluation Semantic unification Results & conclusions Processing Language “The man breaks the glass” Syntactical Unification Word graphs Possible sentence graphs Semantical evaluation Semantical unification
13
Introduction Knowledge Graphs Processing Language Syntactic unification Semantic evaluation Semantic unification Results & conclusions Syntactic Unification “The man breaks the glass” Syntactical Unification Word graphs Possible sentence graphs Semantical evaluation Semantical unification
14
Introduction Knowledge Graphs Processing Language Syntactic unification Semantic evaluation Semantic unification Results & conclusions Syntactic Unification par COLOR ali par ali equ - equ par TIME ali CHANGING COLOR ord ANIMATE ALI CAU “The man paints the wall” HUMAN ALI MALE ADULT
15
Introduction Knowledge Graphs Processing Language Syntactic unification Semantic evaluation Semantic unification Results & conclusions Syntactic Unification Role node: a node in a graph serving as a connection point for other word graphs with a certain grammatical function.
16
Introduction Knowledge Graphs Processing Language Syntactic unification Semantic evaluation Semantic unification Results & conclusions Syntactic Unification Role nodes are only syntactic Subject, object, head
17
Introduction Knowledge Graphs Processing Language Syntactic unification Semantic evaluation Semantic unification Results & conclusions Syntactic Unification Semantical relationships stem from the place of a role node within the graph structure No roles for agent, location, instrument
18
Introduction Knowledge Graphs Processing Language Syntactic unification Semantic evaluation Semantic unification Results & conclusions Semantic Evaluation “The man breaks the glass” Syntactical Unification Word graphs Possible sentence graphs Semantical evaluation Semantical unification
19
Introduction Knowledge Graphs Processing Language Syntactic unification Semantic evaluation Semantic unification Results & conclusions Semantic Evaluation A LIVING ENTITY ali PERSON ali SELFCONCIOUS par “kill”“Oswald” Example: “The president kills Oswald”
20
Introduction Knowledge Graphs Processing Language Syntactic unification Semantic evaluation Semantic unification Results & conclusions Semantic Evaluation A LIVING ENTITY ali PERSON ali SELFCONCIOUS par “kill”“Oswald” ali
21
Introduction Knowledge Graphs Processing Language Syntactic unification Semantic evaluation Semantic unification Results & conclusions Semantic Evaluation A LIVING ENTITY ali PERSON ali SELFCONCIOUS par “kill”“Oswald” ali
22
Introduction Knowledge Graphs Processing Language Syntactic unification Semantic evaluation Semantic unification Results & conclusions Semantic Evaluation POSPAR BREAK HUMAN ALI PAR MALE ADULT PAR 1 LIVING ENTITY ALI CAU 3 BROKEN PAR FRAGILE PAR 2 -PAR GLASS ALI PAR FRAGILE TRANSPARANT PAR BEVERAGE SUB EQU STONE ALI -PAR FRAGILE FPAR
23
Introduction Knowledge Graphs Processing Language Syntactic unification Semantic evaluation Semantic unification Results & conclusions Semantic Evaluation POSPAR BREAK HUMAN ALIPAR MALEADULT PAR 1 LIVING ENTITY ALI CAU 3 BROKEN PAR FRAGILE PAR 2 -PAR GLASS ALI PAR FRAGILE TRANSPARANT PAR BEVERAGE SUB EQU STONE ALI -PAR FRAGILE SUB
24
Introduction Knowledge Graphs Processing Language Syntactic unification Semantic evaluation Semantic unification Results & conclusions Semantic Unification “The man breaks the glass” Syntactical Unification Word graphs Possible sentence graphs Semantical evaluation Semantical unification
25
Introduction Knowledge Graphs Processing Language Syntactic unification Semantic evaluation Semantic unification Results & conclusions Semantic Unification POSPAR BREAK HUMAN ALI PAR MALE ADULT PAR 1 LIVING ENTITY ALI CAU 3 BROKEN PAR FRAGILE PAR 2 -PAR GLASS ALI PAR FRAGILE TRANSPARANT PAR BEVERAGE SUB EQU STONE ALI -PAR FRAGILE FPAR CAU
26
Introduction Knowledge Graphs Processing Language Syntactic unification Semantic evaluation Semantic unification Results & conclusions Results
27
Introduction Knowledge Graphs Processing Language Syntactic unification Semantic evaluation Semantic unification Results & conclusions Results First tests: Small lexicon & grammar Ambiguities
28
Introduction Knowledge Graphs Processing Language Syntactic unification Semantic evaluation Semantic unification Results & conclusions Conclusions First results are good More testing needed Larger lexicon & grammar
29
Applications Ambiguity resolution in NLP systems Anaphor & coreference resolution Information Extraction Introduction Knowledge Graphs Processing Language Syntactic unification Semantic evaluation Semantic unification Results & conclusions
30
Future Work Building a larger lexicon Automated lexicon learning Testing in dialog application (Virtual Music Centre) Introduction Knowledge Graphs Processing Language Syntactic unification Semantic evaluation Semantic unification Results & conclusions
31
Questions & discussion
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.