Download presentation
Presentation is loading. Please wait.
Published byNeal Hopkins Modified over 8 years ago
1
Information Systems & Semantic Web University of Koblenz ▪ Landau, Germany Advanced Data Modeling Steffen Staab with Simon Schenk TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A AAA
2
ISWeb - Information Systems & Semantic Web Steffen Staab staab@uni-koblenz.de2 Overview First-order logic. Syntax and semantics. Herbrand interpretations; Clauses and goals; Datalog.
3
ISWeb - Information Systems & Semantic Web Steffen Staab staab@uni-koblenz.de3 First-order signature First-order signature § consists of con — the set of constants of § ; fun — the set of function symbols of § ; rel — the set of relation symbols of §.
4
ISWeb - Information Systems & Semantic Web Steffen Staab staab@uni-koblenz.de4 Terms Term of § with variables in X: 1. Constant c 2 con; 2. Variable v 2 X; 3. If f 2 fun is a function symbol of arity n and t 1, …, t n are terms, then f(t 1, …, t n ) is a term. A term is ground if it has no variables var(t) — the set of variables of t
5
ISWeb - Information Systems & Semantic Web Steffen Staab staab@uni-koblenz.de5 Abstract and concrete notation Abstract notation: a, b, c, d, e for constants; x, y, z, u, v, w for variables; f, g, h for function symbols; p, q for relation symbols, Example: f(x, g(y)). Concrete notation: teletype font for everything. Variable names start with upper-case letters. Example: likes(john, Anybody).
6
ISWeb - Information Systems & Semantic Web Steffen Staab staab@uni-koblenz.de6 Formulas Atomic formulas, or atoms p(t 1, …, t n ). (A 1 Æ … Æ A n ) and (A 1 Ç … Ç A n ) (A ! B) and (A $ B) : A 8 v A and 9 v A
7
ISWeb - Information Systems & Semantic Web Steffen Staab staab@uni-koblenz.de7 Substitutions Substitution µ : is any mapping from the set V of variables to the set of terms such that there is only a finite number of variables v 2 V with µ (v) v. Domain dom( µ ), range ran( µ ) and variable range vran( µ ): dom( µ ) = {v | v µ (v)}, ran( µ ) = { t | 9 v 2 dom( µ )( µ (v) = t)}, vran( µ ) = var(ran( µ )). Notation: { x 1 t 1, …, x n t n } empty substitution {}
8
ISWeb - Information Systems & Semantic Web Steffen Staab staab@uni-koblenz.de8 Application of substitution Application of a substitution µ to a term t: x µ = µ (x) c µ = c f(t 1, …, t n ) µ = f(t 1 µ, …, t n µ )
9
ISWeb - Information Systems & Semantic Web Steffen Staab staab@uni-koblenz.de9 Herbrand interpretation A Herbrand interpretation of a signature § is any set of ground atoms of this signature.
10
ISWeb - Information Systems & Semantic Web Steffen Staab staab@uni-koblenz.de10 Truth in Herbrand Interpretations 1. If A is atomic, then I ² A if A 2 I 2. I ² B 1 Æ … Æ B n if I ² B i for all i 3. I ² B 1 Ç … Ç B n if I ² B i for some i 4. I ² B 1 ! B 2 if either I ² B 2 or I ² B 1 5. I ² : B if I ² B 6. I ² 8 xB if I ² B{x t} for all ground terms t of the signature § 7. I ² 9 xB if I ² B{x t} for some ground term t of the signature §
11
ISWeb - Information Systems & Semantic Web Steffen Staab staab@uni-koblenz.de11 Literals Literal is either an atom or the negation : A of an atom A. Positive literal: atom Negative literal: negation of an atom Complimentary literals: A and : A Notation: L
12
ISWeb - Information Systems & Semantic Web Steffen Staab staab@uni-koblenz.de12 Clause Clause: (or normal clause) formula L 1 Æ … Æ L n ! A, where n ¸ 0, each L i is a literal and A is an atom. Notation: A :- L 1 Æ … Æ L n or A :- L 1, …, L n Head: the atom A. Body: The conjunction L 1 Æ … Æ L n Definite clause: all L i are positive Fact: clause with empty body
13
ISWeb - Information Systems & Semantic Web Steffen Staab staab@uni-koblenz.de13 Classification ClauseClass lives(Person, sweden) :- sells(Person, wine, Shop), not open(Shop,saturday) normal spy(Person) :- russian(Person)definite spy(bond)fact
14
ISWeb - Information Systems & Semantic Web Steffen Staab staab@uni-koblenz.de14 Goal Goal (also normal goal) is any conjunction of literals L 1 Æ … Æ L n Definite goal: all L i are positive Empty goal □: when n = 0
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.