Download presentation
1
Processing visual information - pathways
Retina (vertical and horizontal pathways) Lateral geniculate nucleus of thalamus (Subcortical areas) Primary visual cortex Secondary visual cortex 1
2
Processing visual information
- processes Contrast and edge detection (retina) Straight edges, curves and corners (primary cortex) Colour (retina, secondary cortex) Movement and complex form (secondary cortex) Depth (primary and secondary cortex) Important concept: parallel processing (different aspects of the same image are processed simultaneously by different cortical regions) 2
3
Retinal wiring 3
4
Retinal connections (Guyton & Hall) 4
5
LIGHT Photoreceptor hyperpolarisation
Visual transduction REMEMBER LIGHT Photoreceptor hyperpolarisation 5
6
Vertical pathway in the fovea
ON and OFF bipolar cells in the dark (Kolb) 6
7
Vertical pathway in the fovea
ON and OFF bipolar cells in light (G protein coupled glutamate receptors can be either excitatory or inhibitory) 7
8
Vertical pathway in the fovea
Fovea: each cone connects to both on and off bipolar cells – Connections from bipolar to ganglion cells are all excitatory + + Ganglion cells produce the first action potentials in the visual pathway (Kandel et al) 8
9
Convergence in the vertical pathway
Fovea: no convergence One cone two ganglion cells Periphery: convergence Many photoreceptors one ganglion cell 9
10
Function of horizontal cells
Effects of light on cone connecting directly to an “on” bipolar cell: Cone is hyperpolarised Bipolar cell is depolarised Ganglion cell is depolarised – 10
11
Function of horizontal cells
Effects of light on area surrounding an “on” bipolar cell: Edge cone is hyperpolarised Horizontal cell is hyperpolarised Centre cone is depolarised Bipolar cell is hyperpolarised Ganglion cell is hyperpolarised – – + Light on edge of receptive field antagonises light on centre Horizontal cells produce surround inhibition 11
12
Result: ganglion cell receptive fields
(Kandel et al) 12
13
Result: ganglion cell receptive fields
(Kandel et al) 13
14
Result: ganglion cell receptive fields
Responds poorly to diffuse light (Kandel et al) 14
15
Central visual pathways
15
16
Outputs from the retina
(Kandel et al) 16
17
Outputs from the retina
Pretectum Pupil constriction/ dilation Superior colliculus Eye movement in pursuit of objects Lateral geniculate nucleus (LGN) Perceived visual image (relay station in cortical pathway) (Kandel et al) 17
18
Outputs from the retina
LGN: “Relay station” Receptive fields similar to those of ganglion cells Input from each eye into separate layers Right worldleft LGN Left worldright LGN (Guyton & Hall) 18
19
Vertical specificity of pathways from retina to cortex
(Kandel et al) 19
20
Effects of visual pathway damage
(Kandel et al) 20
21
Primary visual cortex 21
22
The visual cortex (Guyton & Hall) 22
23
Medial surface of occipital cortex: large foveal representation
Primary visual cortex Medial surface of occipital cortex: large foveal representation (Kandel et al) 23
24
Primary visual cortex Area of cortex devoted to fovea is huge...
because High convergence in periphery - no convergence in fovea (Mountcastle) 24
25
Edge detection 25
26
Edge detection Edge detection: perhaps the most important aspect of image processing Begins with ganglion cells, continues in the cortex 26
27
27
28
28
29
29
30
Edge detection begins in the retina
Ganglion cell responds best when the edge just touches the central region of the receptive field (Kandel et al) 30
31
Edge detection in primary visual cortex
Three types of cells continue the processing: Simple cells Complex cells End-stopped complex cells 31
32
How the recordings were made
32
33
Simple cell (Kandel et al) 33
34
Simple cell A simple cell: responds to a straight edge
at a specific angle in a specific position in the visual field (Kandel et al) 34
35
Varieties of simple cell receptive field
(Kandel et al) 35
36
Constructing the simple cell receptive field
LGN neurones Simple cell (Kandel et al) 36
37
Complex cell (Kandel et al) 37
38
Complex cell 38
39
Complex cell A complex cell: responds to a straight edge
at a specific angle in any position within a large receptive field The edge stimulus can continue beyond the edge of the receptive field (Kandel et al) 39
40
End-stopped complex cell
Like a complex cell... ...but inhibited if a straight edge stimulus continues beyond the receptive field Not inhibited by corners (Hubel) 40
41
Edge detection in primary visual cortex
Simple cells Straight edges in a specific place Complex cells Straight edges within a defined region End-stopped complex cells Corners and curves 41
42
Colour vision 42
43
Colour opponent ganglion cells
see 43
44
Colour “blindness” Genes on X chromosome for L (red) and M (green): recombination may make mutant forms or else cause gain/loss Males, having only one X, may lack red or green cones (Kandel et al) 44
45
Colour “blindness” Subject can’t distinguish colours in this frequency range 45
46
Testing colour vision Ishihara test (Kandel et al) 46
47
Testing colour vision Constructing the Ishihara test 3. Sum of 1 + 2
1. blue-yellow 2. red-green 3. Sum of 1 + 2 47
48
Simulated colour “blindness”
Normal Protanope (no red cones) 48
49
Simulated colour “blindness”
Normal Deuteranope (no green cones) 49
50
Simulated colour “blindness”
Normal Tritanope (no blue cones) 50
51
Depth perception 51
52
Monocular depth cues (Kandel et al) 52
53
Monocular depth cues 53
54
Binocular disparity (Kandel et al) 54
55
Binocular disparity neurones
(Kandel et al) 55
56
A pure binocular disparity stimulus
(Kandel et al) 56
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.