Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Experimental Statistics - week 5 Chapter 9: Multiple Comparisons Chapter 15: Randomized Complete Block Design (15.3)

Similar presentations


Presentation on theme: "1 Experimental Statistics - week 5 Chapter 9: Multiple Comparisons Chapter 15: Randomized Complete Block Design (15.3)"— Presentation transcript:

1 1 Experimental Statistics - week 5 Chapter 9: Multiple Comparisons Chapter 15: Randomized Complete Block Design (15.3)

2 2 PC SAS on Campus Library BIC Student Center http://support.sas.com/rnd/le/index.html SAS Learning Edition $125

3 3 1-Factor ANOVA Model y ij =  i  ij mean for i th treatment unexplained part

4 4 1-Factor ANOVA Model y ij =  i  ij or observed data mean for i th treatment unexplained part

5 5 1-Factor ANOVA Model y ij =  i  ij y ij =  i  ij or observed data mean for i th treatment unexplained part

6 6 1-Factor ANOVA Model y ij =  i  ij y ij =  i  ij or observed data

7 7 1-Factor ANOVA Model y ij =  i  ij y ij =  i  ij or mean for i th treatment

8 8 1-Factor ANOVA Model y ij =  i  ij y ij =  i  ij or unexplained part

9 9 were rewritten as:

10 10 In words: TSS (total SS) = total sample variability among y ij values SSB (SS “between”) = variability explained by differences in group means SSW (SS “within”) = unexplained variability (within groups)

11 11 Analysis of Variance Table Note: unequal sample sizes allowed

12 12 CAR DATA Example For this analysis, 5 gasoline types (A - E) were to be tested. Twenty cars were selected for testing and were assigned randomly to the groups (i.e. the gasoline types). Thus, in the analysis, each gasoline type was tested on 4 cars. A performance-based octane reading was obtained for each car, and the question is whether the gasolines differ with respect to this octane reading. A 91.7 91.2 90.9 90.6 B 91.7 91.9 90.9 C 92.4 91.2 91.6 91.0 D 91.8 92.2 92.0 91.4 E 93.1 92.9 92.4

13 13 Problem 1. Descriptive Statistics for CAR Data The MEANS Procedure Analysis Variable : octane Mean Std Dev Minimum Maximum ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 91.7100000 0.7062876 90.6000000 93.1000000 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

14 14 Problem 3. Descriptive Statistics by Gasoline ------------------------------------ gas=A ------------------------------------- The MEANS Procedure Analysis Variable : octane Mean Std Dev Minimum Maximum ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 91.1000000 0.4690416 90.6000000 91.7000000 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ ------------------------------------ gas=B ------------------------------------- Analysis Variable : octane Mean Std Dev Minimum Maximum ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 91.3500000 0.5259911 90.9000000 91.9000000 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ ------------------------------------ gas=C ------------------------------------- Analysis Variable : octane Mean Std Dev Minimum Maximum ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 91.5500000 0.6191392 91.0000000 92.4000000 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ ------------------------------------ gas=D ------------------------------------- Analysis Variable : octane Mean Std Dev Minimum Maximum ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 91.8500000 0.3415650 91.4000000 92.2000000 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ ------------------------------------ gas=E ------------------------------------- The MEANS Procedure Analysis Variable : octane Mean Std Dev Minimum Maximum ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 92.7000000 0.3559026 92.4000000 93.1000000 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

15 15 Gasoline Example - Completely Randomized Design -- All 5 Gasolines The GLM Procedure Dependent Variable: octane Sum of Source DF Squares Mean Square F Value Pr > F Model 4 6.10800000 1.52700000 6.80 0.0025 Error 15 3.37000000 0.22466667 Corrected Total 19 9.47800000 R-Square Coeff Var Root MSE octane Mean 0.644440 0.516836 0.473990 91.71000 Source DF Type I SS Mean Square F Value Pr > F gas 4 6.10800000 1.52700000 6.80 0.0025

16 16 Problem 6. 1-factor ANOVA for first 3 GAS Types The GLM Procedure Dependent Variable: octane Sum of Source DF Squares Mean Square F Value Pr > F Model 2 0.40666667 0.20333333 0.69 0.5248 Error 9 2.64000000 0.29333333 Corrected Total 11 3.04666667 R-Square Coeff Var Root MSE octane Mean 0.133479 0.592996 0.541603 91.33333 Source DF Type I SS Mean Square F Value Pr > F gas 2 0.40666667 0.20333333 0.69 0.5248

17 17 Problem 3. Descriptive Statistics by Gasoline ------------------------------------ gas=A ------------------------------------- The MEANS Procedure Analysis Variable : octane Mean Std Dev Minimum Maximum ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 91.1000000 0.4690416 90.6000000 91.7000000 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ ------------------------------------ gas=B ------------------------------------- Analysis Variable : octane Mean Std Dev Minimum Maximum ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 91.3500000 0.5259911 90.9000000 91.9000000 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ ------------------------------------ gas=C ------------------------------------- Analysis Variable : octane Mean Std Dev Minimum Maximum ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 91.5500000 0.6191392 91.0000000 92.4000000 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ ------------------------------------ gas=D ------------------------------------- Analysis Variable : octane Mean Std Dev Minimum Maximum ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 91.8500000 0.3415650 91.4000000 92.2000000 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ ------------------------------------ gas=E ------------------------------------- The MEANS Procedure Analysis Variable : octane Mean Std Dev Minimum Maximum ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 92.7000000 0.3559026 92.4000000 93.1000000 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

18 18

19 19 Question 1: Which gasolines are different? Question 2: Why didn’t we just do t-tests to compare all combinations of gasolines? i.e. compare A vs B A vs C... D vs E

20 20 Simulation: i.e. using computer to generate data under certain known conditions and observing the outcomes

21 21 Setting : Normal population with:  and  Simulation Experiment: Generate 2 samples of size n = 10 from this population and run t-test to compare sample means. Question: What do we expect to happen? i.e test:

22 22 2 21.1 5.4 t-test procedure:  Reject H 0 if | t | > 2.101 Simulation Results: t =.235 so we do not reject H 0 1 21.6 4.0

23 23 1 21.6 4.0 2 21.1 5.4 3 20.9 6.2 4 18.3 3.2 5 23.1 6.7 6 18.6 4.8 7 22.2 5.8 8 19.1 5.9 9 20.3 2.5 10 19.3 3.2 Now - suppose we obtain 10 samples and test Simulation results: Note: Comparing means 4 vs 5 we get t = 2.33 What does this mean?

24 24 Suppose we run all possible t-tests at significance level   to compare 10 sample means of size n = 10 from this population - it can be shown that there is a 63% chance that at least one pair of means will be declared significantly different from each other F-test in ANOVA controls overall significance level.

25 25 Probability of finding at least 2 of k means significantly different using multiple t-=tests at the  level when all means are actually equal. k Prob. 2.05 3.13 4.21 5.29 10.63 20.92

26 Protected LSD: Preceded by an F-test for overall significance. Unprotected: Not preceded by an F-test (like individual t-tests). Only use the LSD if F is significant. Fisher’s Least Significant Difference (LSD) X

27 27 Gasoline Example - Completely Randomized Design -- All 5 Gasolines The GLM Procedure Dependent Variable: octane Sum of Source DF Squares Mean Square F Value Pr > F Model 4 6.10800000 1.52700000 6.80 0.0025 Error 15 3.37000000 0.22466667 Corrected Total 19 9.47800000 R-Square Coeff Var Root MSE octane Mean 0.644440 0.516836 0.473990 91.71000 Source DF Type I SS Mean Square F Value Pr > F gas 4 6.10800000 1.52700000 6.80 0.0025

28 28 Problem 3. Descriptive Statistics by Gasoline ------------------------------------ gas=A ------------------------------------- The MEANS Procedure Analysis Variable : octane Mean Std Dev Minimum Maximum ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 91.1000000 0.4690416 90.6000000 91.7000000 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ ------------------------------------ gas=B ------------------------------------- Analysis Variable : octane Mean Std Dev Minimum Maximum ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 91.3500000 0.5259911 90.9000000 91.9000000 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ ------------------------------------ gas=C ------------------------------------- Analysis Variable : octane Mean Std Dev Minimum Maximum ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 91.5500000 0.6191392 91.0000000 92.4000000 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ ------------------------------------ gas=D ------------------------------------- Analysis Variable : octane Mean Std Dev Minimum Maximum ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 91.8500000 0.3415650 91.4000000 92.2000000 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ ------------------------------------ gas=E ------------------------------------- The MEANS Procedure Analysis Variable : octane Mean Std Dev Minimum Maximum ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 92.7000000 0.3559026 92.4000000 93.1000000 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

29 29

30 30

31 31 PROC GLM; (or ANOVA) CLASS gas; MODEL octane=gas; TITLE 'Gasoline Example - Completely Randomized Design'; MEANS gas/lsd; RUN;

32 32 Gasoline Example - Completely Randomized Design The GLM Procedure t Tests (LSD) for octane NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. Alpha 0.05 Error Degrees of Freedom 15 Error Mean Square 0.224667 Critical Value of t 2.13145 Least Significant Difference 0.7144 Means with the same letter are not significantly different. t Grouping Mean N gas A 92.7000 4 E B 91.8500 4 D B C B 91.5500 4 C C B C B 91.3500 4 B C C 91.1000 4 A

33 33 Gasoline Example - Completely Randomized Design The GLM Procedure t Tests (LSD) for octane NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. Alpha 0.05 Error Degrees of Freedom 15 Error Mean Square 0.224667 Critical Value of t 2.13145 Least Significant Difference 0.7144 Means with the same letter are not significantly different. t Grouping Mean N gas A 92.7000 4 E B 91.8500 4 D B C B 91.5500 4 C C B C B 91.3500 4 B C C 91.1000 4 A

34 Bonferroni Multiple Comparisons (BSD) Number of Pairwise Comparisons

35 35

36 36

37 37 PROC GLM; (or ANOVA) CLASS gas; MODEL octane=gas; TITLE 'Gasoline Example - Completely Randomized Design'; MEANS gas/bon; RUN;

38 38 Gasoline Example - Completely Randomized Design The GLM Procedure Bonferroni (Dunn) t Tests for octane NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than REGWQ. Alpha 0.05 Error Degrees of Freedom 15 Error Mean Square 0.224667 Critical Value of t 3.28604 Minimum Significant Difference 1.1014 Means with the same letter are not significantly different. Bon Grouping Mean N gas A 92.7000 4 E A B A 91.8500 4 D B B 91.5500 4 C B B 91.3500 4 B B B 91.1000 4 A

39 39 Gasoline Example - Completely Randomized Design The GLM Procedure Bonferroni (Dunn) t Tests for octane NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than REGWQ. Alpha 0.05 Error Degrees of Freedom 15 Error Mean Square 0.224667 Critical Value of t 3.28604 Minimum Significant Difference 1.1014 Means with the same letter are not significantly different. Bon Grouping Mean N gas A 92.7000 4 E A B A 91.8500 4 D B B 91.5500 4 C B B 91.3500 4 B B B 91.1000 4 A

40 40 Extracted from From Ex. 8.2, page 390-391 3 Methods for Reducing Hostility 12 students displaying similar hostility were randomly assigned to 3 treatment methods. Scores (HLT) at end of study recorded. Method 1 96 79 91 85 Method 2 77 76 74 73 Method 3 66 73 69 66 Test:

41 41 ANOVA Table Output - hostility data - calculations done in class Source SS df MS F p-value Between 767.17 2 383.58 16.7 <.001 samples Within 205.74 9 22.86 samples Totals 972.91

42 42

43 43 Extracted from From Ex. 8.2, page 390-391 3 Methods for Reducing Hostility 12 students displaying similar hostility were randomly assigned to 3 treatment methods. Scores (HLT) at end of study recorded. Method 1 96 79 91 85 Method 2 77 76 74 73 Method 3 66 73 69 66 Test:

44 44

45 45 Hostility Data - Completely Randomized Design The GLM Procedure t Tests (LSD) for score NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. Alpha 0.05 Error Degrees of Freedom 9 Error Mean Square 22.86111 Critical Value of t 2.26216 Least Significant Difference 7.6482 Means with the same letter are not significantly different. t Grouping Mean N method A 87.750 4 M1 B 75.000 4 M2 B B 68.500 4 M3

46 46 Hostility Data - Completely Randomized Design The GLM Procedure Bonferroni (Dunn) t Tests for score NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than REGWQ. Alpha 0.05 Error Degrees of Freedom 9 Error Mean Square 22.86111 Critical Value of t 2.93332 Minimum Significant Difference 9.9173 Means with the same letter are not significantly different. Bon Grouping Mean N method A 87.750 4 M1 B 75.000 4 M2 B B 68.500 4 M3

47 47 Begin Thursday, February 10 Lecture

48 48 Some Multiple Comparison Techniques in SAS FISHER’S LSD (LSD) BONFERRONI (BON) STUDENT-NEWMAN-KEULS (SNK) DUNCAN DUNNETT RYAN-EINOT-GABRIEL-WELCH (REGWQ) SCHEFFE TUKEY

49 49 1122.4 2324.6 3120.3 4419.8 5324.3 6222.2 7228.5 8225.7 9320.2 10119.6 11228.8 12424.0 13417.1 14419.3 15324.2 16115.8 17218.3 18117.5 19418.7 20322.9 21116.3 22414.0 23416.6 24218.1 25218.9 26416.0 27220.1 28322.5 29316.0 30119.3 31115.9 32320.3 Balloon Data Col. 1-2 - observation number Col. 3 - color (1=pink, 2=yellow, 3=orange, 4=blue) Col. 4-7 - inflation time in seconds

50 50 ANOVA --- Balloon Data General Linear Models Procedure Dependent Variable: TIME Sum of Mean Source DF Squares Square F Value Pr > F Model 3 126.15125000 42.05041667 3.85 0.0200 Error 28 305.64750000 10.91598214 Corrected Total 31 431.79875000 R-Square C.V. Root MSE TIME Mean 0.292153 16.31069 3.3039343 20.256250 Mean Source DF Type I SS Square F Value Pr > F Color 3 126.15125000 42.05041667 3.85 0.0200

51 51 Experimental Design: Concepts and Terminology Designed Experiment - an investigation in which a specified framework is used to compare groups or treatments Factors - up to this point we’ve only looked at experiments with a single factor - any feature of the experiment that can be varied from trial to trial

52 52 Experimental Units - subjects, material, etc. to which treatment factors are randomly assigned - there is inherent variability among these units irrespective of the treatment imposed Replication - we usually assign each treatment to several experimental units - these are called replicates - conditions constructed from the factors (levels of the factor considered, etc.) Treatments

53 53 Examples: Car Data Hostility Data Balloon Data treatments experimental units replicates

54 54 Scatterplot Using GPLOT

55 55 Plot of time*id. Legend: A = 1 obs, B = 2 obs, etc. time ‚ 30 ˆ ‚ ‚ A 28 ˆ ‚ 26 ˆ ‚ A ‚ ‚ A ‚ A A 24 ˆ A ‚ ‚ A ‚ A A A 22 ˆ ‚ ‚ A A A 20 ˆ A A ‚ A ‚ A A ‚ A 18 ˆ A ‚ A 16 ˆ A A A A ‚ 14 ˆ A Šƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒ 0 5 10 15 20 25 30 35 id Scatterplot Using PLOT

56 56 RECALL: 1-Factor ANOVA Model - random errors follow a Normal ( N) distribution, are independently distributed ( ID ), and have zero mean and constant variance -- i.e. variability does not change from group to group

57 57 Model Assumptions: Checking Validity of Assumptions 1. F-test similar to 2-sample case - Hartley’s test (p.366 text) - not recommended 2. Graphical - side-by-side box plots - equal variances - normality Equal Variances

58 58 Graphical Assessment of Equal Variance Assumption

59 59 y ij =  i  ij Assessing Normality of Errors  ij = y ij  (  i ) so  ij is estimated by = y ij  i

60 60 proc glm; class color; model time=color; title 'ANOVA --- Balloon Data'; output out=new r=resid; means color/lsd; run; proc univariate normal plot; var resid; title 'Normal Probability Plot for Residuals - Balloon Data'; run;

61 61 Normal Probability Plot 6.5+ +*+ | * *+++ | *+++ | +*+ | *** | **** 0.5+ ***+ | ++** | ++*** | ***** | +*+ | *+*+* -5.5+ * ++++ +----+----+----+----+----+----+----+----+----+--- -+ -2 -1 0 +1 +2

62 62 Homework Problem using Balloon Data: - Run ANOVA using SAS -- Do not use the 4-step procedure. Instead, describe your findings based on the P-value. - Run multiple comparisons (both Fisher’s LSD and Bonferroni) -- by hand -- using SAS for Balloon Data - Give graphical assessment of the normality and equal variance assumptions and discuss your results

63 63 Model for Gasoline Data y ij =  i  ij y ij =  i  ij or unexplained part mean for i th gasoline observed octane -- car-to-car differences -- temperature -- etc.

64 64 Gasoline Data Question: What if car differences are obscuring gasoline differences? Similar to diet t-test example: Recall: person-to-person differences obscured effect of diet

65 65 Possible Alternative Design: Test all 5 gasolines on the same car - in essence we test the gasoline effect directly and remove effect of car-to-car variation Question: How would you randomize an experiment with 4 cars?

66 66 Blocking an Experiment - dividing the observations into groups (called blocks) where the observations in each block are collected under relatively similar conditions - comparisons can may times be made more precisely this way

67 67 Terminology is based on Agricultural Experiments Consider the problem of testing fertilizers on a crop - t fertilizers - n observations on each

68 68 Completely Randomized Design A A B B C C B A C C B A A B C t = 3 fertilizers n = 5 replications Randomly selected 15 plots

69 69 Randomized Complete Block Strategy B | A | C A | C | B C | A | B A | B | C C | B | A t = 3 fertilizers - randomly select 5 “blocks” - randomly assign the 3 treatments to each block Note: The 3 “plots” within each block are similar - similar soil type, sun, water, etc

70 70 Randomized Complete Block Design Randomly assign each treatment once to every block Car Example Car 1: randomly assign each gas to this car Car 2:.... etc. Agricultural Example Randomly assign each fertilizer to one of the 3 plots within each block

71 71 y ij =  i  j  ij Model For Randomized Complete Block Design effect of i th treatment effect of j th block unexplained error (car)(gasoline)

72 72


Download ppt "1 Experimental Statistics - week 5 Chapter 9: Multiple Comparisons Chapter 15: Randomized Complete Block Design (15.3)"

Similar presentations


Ads by Google