Download presentation
Presentation is loading. Please wait.
Published byGriselda Goodman Modified over 8 years ago
1
Dalitz Decays and Bremsstrahlung from in-Medium EM Spectral Functions Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA ExtreMe Matter Institute Workshop on Virtual Bremsstrahlung and HADES Frankfurt University, 12.08.09
2
Thermal electromagnetic radiation ↔ EM correlation function 1.) Introduction e+ e-e+ e- γ Im Π em (M>0,q; B,T) Im Π em (M=0,q, B,T) B e+e-e+e- γ Leading orders annihilation Dalitz, scattering Bremsstrahlung ~ O , M>2m ~ g s 2, soft ~ g s 4, super-soft
3
1.2 Electric Conductivity pion gas (chiral pert. theory) EM / T ~ 0.01 for T ~ 150-200 MeV [Fernandez-Fraile+Gomez-Nicola ’07] quenched lattice QCD EM / T ~ 0.35 for T = (1.5-3) T c [Gupta ’04] soft-photon limit of thermal emission rate
4
1.) Introduction 2.) Phenomenology at SPS Low-Mass Dileptons Low-Energy Photons and Bremsstrahlung 3.) EM Emission Rates In-Medium Spectral Function Process Decomposition: SPS vs. HADES -Dalitz 4.) Conclusions Outline
5
2.1 NA60 Data vs. In-Medium Dimuon Rates acceptance-corrected data directly reflect thermal rates! M [GeV] [RR,Wambach et al. ’99] [van Hees +RR ’07]
6
2.2 Direct Photons at SPS: WA98 [Turbide,RR +Gale’04] Thermal Radiation + pQCD pQCD+Cronin at q t > 1.5 GeV Add → Bremsstrahlung [Liu+RR’06]
7
1.) Introduction 2.) Phenomenology at SPS Low-Mass Dileptons Low-Energy Photons and Bremsstrahlung 3.) EM Emission Rates In-Medium Spectral Function Process Decomposition: SPS vs. HADES -Dalitz 4.) Conclusions Outline
8
> > B *,a 1,K 1... N, ,K … 3.1 In-Medium Spectral Function : Im D ~ Im EM D (M,q; B,T) = [M 2 - m 2 - - B - M ] -1 -Propagator: = B, M = Selfenergies: Constraints: decays: B,M→ N, scattering: N → N, A, … B / 0 0 0.1 0.7 2.6 Meson “Melting” Switch off Baryons
9
3.2 Production Processes from Spectral Function ↔ Cuts (imag. parts) of Selfenergy Diagrams: N -1 > N → N, N → → N meson-exchange scattering resonance Dalitz decays → a 1 → Bremsstrahlung N → NN, N
10
3.2.2 Decomposition of Emission Rates ”SPS” “SIS” in-medium annihilation leading at SPS ( ~ N ch 1.3 !?) baryon resonance “Dalitz decays” at SIS ( ~ N !?) interference toward m
11
3.3 Dileptons at DLS/HADES Transport Simulations (HSD) importance of: - NN Bremsstrahlung (non-thermal) - Dalitz (long tail) - in-medium (1- threshold) [Bratkovskaya+Cassing ’08]
12
3.3.2 Selfenergy and Dalitz Decay production phase space ~ ! dilepton rate > > N N =
13
3.3.3 Dalitz at SIS appreciable only below M < 0.3GeV – crossing at ~ 0.4 GeV
14
4.) Conclusions Bremsstrahlung, Dalitz decays ↔ in-medium EM SF ( SF) nontrivial excitation function consistency with transport models to be quantified
15
2.3 –Meson at SPS “average” (T~150MeV) ~ 350-400 MeV (T~T c ) ≈ 600 MeV → m fireball lifetime: FB ~ (6.5±1) fm/c [van Hees+RR ‘06, Dusling et al ’06, Ruppert et al ’07, Bratkovskaya et al ‘08]
16
2.3.2 Acceptance-Corrected NA60 Spectra more involved at p T >1.5GeV: Drell-Yan, primordial/freezeout , … M [GeV]
17
Light-like -Spectral Function, D (q 0 =q), and Nuclear Photo-Absorption NANA -ex [Urban,Buballa,RR+Wambach ’98] On the Nucleon On Nuclei 2.+3. resonance melt (parameter) (selfconsistent N(1520)→N ) [Post,Mosel et al ’98] fixes coupling constants and formfactor cutoffs for NB
18
2.4 Spectral Function at Lower Collision Energies largest sensitivity for M ≤ 0.4 GeV soft modes! Critical point: - L mixing (q≠0) with m → 0, but: → e + e signal (too) weak
19
2.5 Cold Nuclear Matter: Photo-Production Fe -Ti N ≈ 0.5 0 + A → e + e X E =1.5-3 GeV [Riek et al ’08] [CLAS/JLab +GiBUU ’08]
20
2.6 Sum Rules and Order Parameters [Weinberg ’67, Das et al ’67, Kapusta+Shuryak ‘93] QCD-SRs [Hatsuda+Lee ’91, Asakawa+Ko ’92, Klingl et al ’97, Leupold et al ’98, Kämpfer et al ‘03, Ruppert et al ’05] Promising synergy of lQCD and effective models Weinberg-SRs: moments Vector Axialvector
21
2.6 Axialvector in Medium: Dynamical a 1 (1260) + +... = Vacuum: a 1 resonance In Medium: + +... in-medium + propagators substantial broadening of - scattering amplitude consequences for chiral restoration to be elaborated [Cabrera,Jido,Roca+RR ’08 in progress]
22
X.) Example for Comprehensive Analysis: NA60 thermal medium radiating from around T c with melted , well-bound J/ with large collectivity Dileptons Charmonium Flow Charmonium Production
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.