Presentation is loading. Please wait.

Presentation is loading. Please wait.

Optical Frequency Comb Referenced Sub-Doppler Resolution Difference-Frequency-Generation Infrared Spectroscopy K. Iwakuni, S. Okubo, H. Nakayama, and H.

Similar presentations


Presentation on theme: "Optical Frequency Comb Referenced Sub-Doppler Resolution Difference-Frequency-Generation Infrared Spectroscopy K. Iwakuni, S. Okubo, H. Nakayama, and H."— Presentation transcript:

1 Optical Frequency Comb Referenced Sub-Doppler Resolution Difference-Frequency-Generation Infrared Spectroscopy K. Iwakuni, S. Okubo, H. Nakayama, and H. Sasada Department of Physics, Faculty of Science and Technology, Keio University, Japan H. Inaba National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology 1 International Symposium on Molecular Spectroscopy Ohio State University June, 18, 2012

2 Outline 1.Optical Frequency Comb Referenced Infrared Spectroscopy Absolute frequency measurements of CH 4 (the ν 3 band) and CH 3 I (the ν 1 band) 2. Modulation Spectroscopy Determination of an electric quadrupole interaction constant 2

3 Spectrometer in the Last Talk 3 ECAC

4 Optical-Comb-Referenced Difference-Frequency-Generation Spectrometer 4 current PZT ECAC

5 ν ECLD Nd:YAG laser f beat2 f beat1 Frequency Control with Optical Frequency Comb f rep

6 ν ECLD Nd:YAG laser ν DFG = Δn f rep + ( f beat1 – f beat2 ) Δn = n 1 – n 2 ν Nd:YAG = f ceo + n 1 f rep + f beat1 ν ECLD = f ceo + n 2 f rep + f beat2 f beat2 f beat1 ν DFG Frequency Control with Optical Frequency Comb mode number difference Δn

7 Absolute Frequency Measurement of CH 4 Linewidth (HWHM) 220 kHz Frequency 88 376 181 602.1 (49) kHz CIPM * 88 376 181 600.5 (20) kHz 7 - 0.0 2.0 - 2.0 4.0 - 4.0 CH 4 ν 3 P(7) F 2 (2)  DFG sweep 13.2 kHz/step ( f rep ; 0.01 Hz/step), 10 ms/step  10 times average  pressure 0.4 Pa *) Comité international des poids et mesures

8 Setup for Determination of Mode Number beat detection 8 InSb PD amplifier f rep 10.7 MHz×2 3.4 μm

9 Spectra of CH 4 and CH 3 I 9 A1A1 F 1 (1) F 2 (2) CH 4 ν 3 P(6) CH 3 I ν 1 Doppler limited spectra around 2958 cm -1 3 GHz frequency marker signal A2A2 F 2 (1) E frequency marker signal f rep frequency 21.4 MHz

10 Spectra of CH 4 and CH 3 I 10 A1A1 F 1 (1) F 2 (2) CH 4 ν 3 P(6) CH 3 I ν 1 Doppler limited spectra around 2958 cm -1 3 GHz A2A2 F 2 (1) E P (J=23, K=5) P (J=22, K=6) frequency marker signal frequency frequency marker signal f rep 21.4 MHz

11 Absolute Frequency Measurement of CH 3 I Hyperfine Structure CH 3 I Hyperfine Structure  DFG sweep 13.2 kHz/step ( f rep ; 0.01 Hz/step), 20 ms/step  40 times average  pressure 0.4 Pa P(J = 22, K=6) 0 2 4 6 8 10 frequency – 88 691 617.731 8 / MHz  linewidth 100 - 130 kHz 0 2 4 6 8 10 12 frequency – 88 689 958.388 2 / MHz CH 3 I ν 1 P(J = 23, K=5) F’’ = 49/2 F’’ = 51/2 39/2 47/2 41/2 45/2 43/2 41/2 49/2 43/2 47/2 45/2

12 Modulation Spectroscopy 12 ECAC

13 frequency – 88 689 959.882 9 / MHz single scan Long-Time Averaging P(J = 22, K=6) CH 3 I ν 1  pressure 0.4 Pa  DFG sweep 13.2 kHz/step ( f rep ; 0.01 Hz/step), 20 ms/step 0 2 4 6 8 10 12

14 14 10 times average P(J = 22, K=6) CH 3 I ν 1 Long-Time Averaging  DFG sweep 13.2 kHz/step ( f rep ; 0.01 Hz/step), 20 ms/step  pressure 0.4 Pa 0 2 4 6 8 10 12 frequency – 88 689 959.882 9 / MHz

15 1f Signals frequency – 88 689 959.882 9/ MHz 0 2 4 6 8 10 12 P(J = 22, K=6) P(J = 23, K=5) 0 2 4 6 8 10 frequency – 88 691 617.731 8 / MHz  pressure 0.4 Pa  linewidth 140 - 160 kHz CH 3 I ν 1 100 times average 30 minutes for measurement  DFG sweep 13.2 kHz/step ( f rep ; 0.01 Hz/step), 20 ms/step

16 Electric Quadrupole Interaction Constant S. Carocci, et al., J. Mol. Spectrosc. 191, 368 (1998) signal / arb. unit 0 2 4 6 8 10 12 frequency – 88 689 959.882 9 / MHz 0 2 4 6 8 10 frequency – 88 691 617.731 8 / MHz eqQ ‘ / MHz χ J ’ / kHzχ K ’ / kHzχ D ’ / kHz - 1934.1306 - 1.55 (11) - 33.36 (78)22.45 (32) P (J = 22, K=6) P (J = 23, K=5) ground state :

17 eqQ / MHz rotation independent χ J ” = χ K ” = χ D ” = 0 eqQ / MHz rotation dependent χ J ” = χ J ’, χ K ” = χ K ’, χ D ” = χ D ’ Previous work * / MHz P ( 22, 6 ) - 1939.290 (15) - 1937.046 (15) P ( 23, 5 ) - 1938.829 (13) - 1937.078 (13) Center frequency ** Calculation - Observation / MHz F’’Calculation / MHz Observation / MHz 49/2 1.547 1.511 0.036 39/2 2.086 2.136 - 0.050 47/2 6.936 6.929 0.007 41/2 7.905 7.925 - 0.019 45/210.03010.024 0.006 43/210.46110.465 - 0.004 Results of Fitting Center frequency *** Calculation - Observation / MHz F’’Calculation / MHz Observation / MHz 51/21.6551.622 0.033 41/22.4902.534 - 0.044 49/24.5744.560 0.013 43/26.0776.097 - 0.020 47/26.6446.639 0.005 45/27.3127.320 - 0.008 - 1937.06 (3) *) E. Arimondo, et al., Phys. Rev. A, 17, 1375 (1978) **) 88 689 959.882 9 MHz P ( J=22, K=6 ) P ( J=23, K=5 ) ***) 88 691 617.731 8 MHzF’ = F” - 1

18 Conclusion The sensitivity of the spectrometer is improved by averaging the signal for a long time without any frequency drift or spectral broadening. The absolute frequency of the hyperfine components of the ν 1 band of CH 3 I has been measured for the first time. The absolute frequency of weak transitions can be measured using this spectrometer. 18

19 19 Thank you for your attention.


Download ppt "Optical Frequency Comb Referenced Sub-Doppler Resolution Difference-Frequency-Generation Infrared Spectroscopy K. Iwakuni, S. Okubo, H. Nakayama, and H."

Similar presentations


Ads by Google