Download presentation
Presentation is loading. Please wait.
Published byGordon Walton Modified over 8 years ago
1
Structure of Unstable Nuclei with Polarized Radioactive Ion Beams Wooyoung Kim A.Gladkov, Y.K. Sun V. Kavtanyuk Nov. 12 th, 2013 J.W. Kim, C.C. Yun
2
Raon Polarization Facility Separator
3
Spin Orientation of Rank 1 and 2 Random spin orientationPolarizationProlate AlignmentOblate Alignment Polarization is analyzed by beta-NMR technique Alignment is analyzed by TDPAD method (gamma-rays detection)
4
AIP Conf. Proc. 980, 283 (2008) The Mechanism of spin-polarized RI beam via PF reaction
5
AIP Conf. Proc. 980, 283 (2008) In the rest flame of the projectile The Longitudinal Momentum Distribution The Transverse Momentum Distribution Near-side trajectory dominance Far-side trajectory dominance Polarization in the PF Reaction
7
Two-step PF +Momentum Dispersion Matching
8
Comments requests: Any requirements on 2 nd target placement? Such as shielding, long space, detector locations and so on. Current Configuration under Study and Beam Line Design from the Linac-End to the Target
9
Target Thickness Dependence of Polarization Target Primary beamSecondary beam Thick Need to find a compromise! Primary beamSecondary beam Target Thin Thin TargetThick Target HighPolarization preservationLow NoSecondary reactionsYes LowMomentum spreadHigh LowProduction rateHigh
10
Principle of Polarization RI beams with Optical Pumping Optical pumping on the D1 transition of the alkali metal - 8 Li Nuclear spin I = 2, Total electronic angular momentum J = ± 1/2 Zeeman splitting in a weak magnetic field Total angular momentum F= I + J Absorption from F -> F’ of circularly polarized light σ + allows Δm F = +1 transition Fluorescence Δm F = -1,0,+1 Maximum electronic and nuclear polarization on the sublevel Δm F = 5/2
11
Low Energy Polarized RI Beams with Optical Pumping atomstargetionizercoolerlaserions rf spin rotanal P. Delheij, 2011 KoRIA Symposium with cooler Scheme : neutralize pump ionize again Polarization 80% with 10 8 8 Li/sec. TRIUMF
12
Experimental Setup for Optical Pumping and β-NMR at CERN Reference 5.
13
Ge detectors at TRIUMF
14
Nuclear Moments with Optical Pumping Method B(E2) of Neutron-rich Mg IsotopeDecay Mode of Neutron-rich Isotope Na Isotope AsymmetryMeasurements in beta Decay 28 Na Decay Mode
15
ElementsPolarizing wavelength ≈(nm) Polarization ≈(%) Place Alkali metals 8 Li671, 673*80TRIUMF 9 Li671, 673*56 TRIUMF 11 Li671, 673*55TRIUMF 20 Na59057TRIUMF 21 Na59056TRIUMF 26 Na59055 TRIUMF 27 Na59051TRIUMF 28 Na59045TRIUMF 29 Na59050 TRIUMF 30 Na59050TRIUMF 31 Na59050TRIUMF 39 K770 40 K770 41 K770 85 Rb795 87 Rb795 133 Cs894CERN 221 Fr817CERN 223 Fr817CERN
16
ElementsPolarizing wavelength ≈(nm) Repump Wavelength ≈(nm) Polari zation ≈(%) Place Alkaline earths 11 Be313noneTRIUMF 27 Mg280none CERN 29 Mg280none40CERN 31 Mg280noneCERN Ca397866CERN Sr4221092CERN Ba494650CERN Ra4681079CERN
17
Reaction Beam Type Beam Energy [MeV/n] Detector/ Facility In-Flight Fragmentation Polarized Beam Expts (Projectile Fragmentation) Nuclear Moments 84 K, 43,44 Sc 200 TDPAD Nuclear Moments 41,39,37,36 S 200 TDPAD Nuclear Moments 123,125,126,127 Sn 200 TDPAD ISOL Polarized Beams (Optical Pumping) Nuclear Moments 8,9,11 Li, 20,21,26-28 Na 0.01-0.06 Laser, beta NMR Nuclear Moments 28 Na 0.05 Laser, Ge Detector Nuclear Moments 27,29,31 Mg, 11 Be 0.06 Laser, beta NMR Nuclear Structure Study with Polarization
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.