Download presentation
Presentation is loading. Please wait.
Published byGeorge Payne Modified over 8 years ago
2
UMCP ENEE 204 Spring 2000, Lecture 30 1 Lecture #31 April 24 st, 2000 ENEE 204 Sections 0201 –0206 HW#11 due Friday April 28 th
3
UMCP ENEE 204 Spring 2000, Lecture 30 2 New topic: dependent sources Independent sources Dependent sources ++ ++
4
UMCP ENEE 204 Spring 2000, Lecture 30 3 There are four types of dependent sources AixAix ixix Current controlled currrent source +vx+vx Gv x Voltage controlled current source ++ RixRix ixix Current controlled voltage source ++ +vx+vx Av x Voltage controlled voltage source
5
UMCP ENEE 204 Spring 2000, Lecture 30 4 Operation of transistors can be modeled by using dependent sources BJT b e c MOSFET current controlled current source voltage controlled current source d g s
6
UMCP ENEE 204 Spring 2000, Lecture 30 5 Simple examples ++ +v2+v2 100 v 2 R2R2 R1R1 R3R3 R4R4 ++ vsvs +v2+v2 5i25i2 R2R2 R1R1 R3R3 R 4R 4 ++ vsvs i2i2
7
UMCP ENEE 204 Spring 2000, Lecture 30 6 For more complex circuits we can use nodal analysis Y3Y3 I s1 I s3 = G 3 v 1 Y2Y2 I s2 = G 2 v 2 Y1Y1 +v2+v2 +v1+v1 v1v1 v3v3 v2v2 v1v1 i 3 =? I s2 = G 2 v 2 = G 2 v 2 I s3 = G 3 v 1 = G 3 v 1 ^ ^ I 3 =Y 3 (v 1 -v 2 ) ^
8
UMCP ENEE 204 Spring 2000, Lecture 30 7 Some circuits are easier to solve using mesh analysis Z3Z3 V s1 Z2Z2 V s2 = A v 2 V s3 = R I 3 Z1Z1 +v2+v2 +v1+v1 + ++ ++ I1I1 I2I2 Z4Z4 V s2 = A Z 2 I 1 V s3 = R (I 1 -I 2 )
9
UMCP ENEE 204 Spring 2000, Lecture 30 8 Another example: a real circuit problem Find v out / v s for >>1 ReRe RBRB + v out vsvs rr RCRC ibib i b BJT
10
UMCP ENEE 204 Spring 2000, Lecture 30 9 Mesh analysis ReRe RBRB + v out vsvs rr RCRC i b I1I1 I2I2 vxvx I 2 = i b = I 1 (r +R e )I 1 + R e I 1 = v s I 1 = v s /(r + ( +1)R e ) ibib I 2 = I 1 = v s /(r + ( +1)R e )
11
UMCP ENEE 204 Spring 2000, Lecture 30 10 Calculating the gain of the amplifier ReRe RBRB + v out vsvs rr RCRC i b I1I1 I2I2 vxvx ibib I 2 = v s /(r + ( +1)R e ) v out = R C I 2 v out = v s R C r + ( +1)R e
12
UMCP ENEE 204 Spring 2000, Lecture 30 11 Thevenin and Norton equivalents can be found for networks containing dependent sources ++ +v2+v2 100 v 2 R2R2 R1R1 R3R3 R4R4 vsvs A B Simple example: + - Z Th V OC A B
13
UMCP ENEE 204 Spring 2000, Lecture 30 12 Another simple situation KVL: iR 1 -100iR 2 +iR 2 v s =0 i (R 1 99R 2 ) v s i = v s / (R 1 99R 2 ) + - Z Th V OC A B Turn off sources: +v2+v2 100 v 2 R1R1 R2R2 vsvs A B + +
14
UMCP ENEE 204 Spring 2000, Lecture 30 13 Try again! Find short circuit current.. +v2+v2 100 v 2 R1R1 R2R2 vsvs A B + + iR 1 v s =0 i v s /R 1 = I SC i + - Z Th V OC A B
15
UMCP ENEE 204 Spring 2000, Lecture 30 14 Another way to solve this problem - use probing current method +v2+v2 100 v 2 R1R1 R2R2 vsvs A B + + iPiP I 2 =i p I1I1 I2I2 vxvx
16
UMCP ENEE 204 Spring 2000, Lecture 30 15 Solving the equations I 2 =i p (R 1 +R 2 ) I 1 R 2 i p = v s +100R 2 (I 1 -i p ) (R 1 99R 2 ) I 1 = v s 99R 2 i p
17
UMCP ENEE 204 Spring 2000, Lecture 30 16 Thevenin equivalent B + - Z Th V OC A iPiP +v2+v2 v 2 =V OC - Z Th i p
18
UMCP ENEE 204 Spring 2000, Lecture 30 17 An amplifier can be characterized by three parameters Gain Input impedance Output impedance Z in Z out ++ Av in v in ++ v out ++
19
UMCP ENEE 204 Spring 2000, Lecture 30 18 Characterizing our amplifier ReRe RBRB + v out vsvs rr RCRC i b Z in Z out ++ Av in v in ++
20
UMCP ENEE 204 Spring 2000, Lecture 30 19 Mesh analysis ReRe RBRB + v out vsvs rr RCRC i b I1I1 I2I2 vxvx I 2 = i b = I 1 (r +R e )I 1 + R e I 1 = v s I 1 = v s /(r + ( +1)R e ) ibib I 2 = I 1 = v s /(r + ( +1)R e )
21
UMCP ENEE 204 Spring 2000, Lecture 30 20 Calculating the gain of the amplifier ReRe RBRB + v out vsvs rr RCRC i b I1I1 I2I2 vxvx ibib I 2 = v s /(r + ( +1)R e ) v out = R C I 2 v out = v s R C r + ( +1)R e
22
UMCP ENEE 204 Spring 2000, Lecture 30 21 Finding the input impedance ReRe RBRB + v out vSvS rr RCRC i b ibib iSiS i S = v S /R B +i B = v S /R B + v s /(r + ( +1)R e ) Z in = v S /i S = R B (r + ( +1)R e ) > R B Y in = i S /v S = 1/R B + 1 /(r + ( +1)R e )
23
UMCP ENEE 204 Spring 2000, Lecture 30 22 Finding the output impedance ReRe RBRB + v out vSvS rr RCRC i b Z out = R C Turn off sources: v S = 0 i b = v s /(r + ( +1)R e ) = 0 ibib i b = 0
24
UMCP ENEE 204 Spring 2000, Lecture 30 23 Characterizing the amplifier ReRe RBRB + v out vSvS rr RCRC i b ibib Z in Z out ++ Av in v in ++ Z in = R B Z out = R C for large
25
UMCP ENEE 204 Spring 2000, Lecture 30 24 Performance of an amplifier in a system can be calculated from the three parameters Z in Z out ++ A v in v in ++ RSRS vSvS RLRL out V Sin S R Z Z V A Lout L R Z R v out ++ Efficient power transfer requieres impedance matching
26
UMCP ENEE 204 Spring 2000, Lecture 30 25 Operational amplifier is an ideal differential amplifier ++ v1v1 v2v2 0 v out = A (v 2 -v 1 ) + Infinite input impedance Zero output impedance Very high (infinite) gain
27
UMCP ENEE 204 Spring 2000, Lecture 30 26 Circuit model for an operational amplifier ++ v1v1 v2v2 0 v out = A (v 2 -v 1 ) + ++ Av in v1v1 v2v2 + v in Typical A= 10 4 > 10 7
28
UMCP ENEE 204 Spring 2000, Lecture 30 27 Properties of a good voltage amplifier Z in Z out ++ Av in v in ++ High gain High input impedance RSRS vSvS Low output impedance RLRL A
29
UMCP ENEE 204 Spring 2000, Lecture 30 28 Inverting configuration for operational amplifier ++ v1v1 v2v2 + v out = A (v 2 -v 1 ) R1R1 R2R2 ++ vsvs
30
UMCP ENEE 204 Spring 2000, Lecture 30 29 Operational amplifier with large, finite A R2R2 ++ v1v1 v2v2 + V out = A (v 2 -v 1 ) R1R1 ++ VsVs i1i1 i2i2 V S +i 1 R 1 + i 2 R 2 + A (v 2 -v 1 ) = 0 i 1 = i 2 due to infinite input impedance V S +i 1 R 1 + i 1 R 2 + A ( V S + i 1 R 1 ) = 0 i 1 (R 1 (1+A) + R 2 ) = V S (1+A) i 1 = V S (A+1) / ( R 1 (A+1) + R 2 ) i 1 > V S / R 1 v 1 =V S i 1 R 1 v 1 -> 0 V out = i 2 R 2 V out i 1 R 2 V S R 2 / R 1
31
UMCP ENEE 204 Spring 2000, Lecture 30 30 Virtual short ++ v1v1 v2v2 + V out = A (v 2 -v 1 ) R1R1 ++ vsvs i1i1 i2i2 In general: 0v vA 12 as i 1 = V S / R 1
32
UMCP ENEE 204 Spring 2000, Lecture 30 31 Calculation of gain R2R2 ++ v1v1 v2v2 + V out R1R1 ++ vsvs i1i1 i2i2 i 1 = i 2 i 2 R 2 + V out = 0 V out = i 2 R 2 = i 1 R 2 i 1 = V S / R 1 V out = V S R 2 / R 1 What does negative gain mean?
33
UMCP ENEE 204 Spring 2000, Lecture 30 32 Procedure for analysis of operational amplifier circuit 1. Find the potential at the + input terminal 2. Using virtual short equate the potentials at + and terminals 3. Find the current flowing into the feedback resistor 4. Calculate the output voltage
34
UMCP ENEE 204 Spring 2000, Lecture 30 33 Example ++ 10 k ++ vsvs 1M + V out = 100 V S
35
UMCP ENEE 204 Spring 2000, Lecture 30 34 The load has no effect on the gain of ideal operational amplifier ++ 10 k ++ vsvs 1M + V out = 100 V S 50 Output impedance is zero
36
UMCP ENEE 204 Spring 2000, Lecture 30 35 The resistor at the + input has no effect on the gain of ideal operational amplifier ++ 10 k ++ vsvs 1M + V out = 100 V S 50 100 input impedance is infinite
37
UMCP ENEE 204 Spring 2000, Lecture 30 36 The resistor between the input terminals has no effect on the gain of ideal operational amplifier ++ 10 k ++ vsvs 1M + V out = 100 V S 50 100 Virtual short is in parallel with the resistor
38
UMCP ENEE 204 Spring 2000, Lecture 30 37 Non-inverting configuration operational amplifier ++ v1v1 v2v2 + V out R1R1 R2R2 ++ vsvs i1i1 i2i2 i 1 = V S /R 1 i 2 = i 1 = V S /R 1 V S + i 2 R 2 +V out = 0 v 2 = V S v 1 = v 2
39
UMCP ENEE 204 Spring 2000, Lecture 30 38 Voltage follower - buffer amplifier ++ + V out ++ vsvs V S +V out = 0 v 2 = V S v 1 = v 2 What is the use of an amplifier with unit gain?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.