Download presentation
Presentation is loading. Please wait.
Published by县 熊 Modified over 7 years ago
1
A LISP interepreter for the Lambda Calculus Functional Programming
Academic Year Alessandro Cimatti
2
Homework Write a program to normalize expressions for lambda calculus
Suggested steps: Define the ADT for lambda terms constructors recognizers Define substitution primitive Define recognizer for redex’s Define beta-reduction rule Define the normalizer: recursively traverse the term looking for redex, and reduce careful with infinite looping!! Some remarks homework due by december 20 oh, it’s today try to use recursive definitions homework is closely related to course project!!!
3
Syntax Expressions have the following syntax e is either Notation
x a variable λx.e a lambda abstraction e1 e application Notation for variables we use x, y, z, w for expressions we use e, e’, e1, e2, ...
4
The ADT for Expressions
; ; e ::= v | l | a ; v ::= symbolp ; a ::= ( e e ) ; l ::= ( lam v e ) (defun mk-v (sym) sym) (defun is-v (e) (symbolp e)) (defun mk-l (v b) (list 'lam v b)) (defun is-l (e) (and (consp e) (= (length e) 3) (equal 'lam (first e)) (is-v (second e)))) (defun l-get-v (l) (second l)) (defun l-get-b (l) (third l)) (defun mk-a (f a) (list f a)) (defun is-a (e) (and (consp e) (= (length e) 2))) (defun a-get-f (a) (first a)) (defun a-get-a (a) (second a))
5
Generalized Recognizer
; takes arbitrary sexp in input ; (defun is-e (e) (cond ((is-v e) t) ((is-a e) (and (is-e (a-get-f e)) (is-e (a-get-a e)))) ((is-l e) (and (is-e (l-get-v e)) (is-e (l-get-b e)))) (t nil)))
6
Free variables The set of free variables in e, denoted as FV(e), is defined as FV(x) = { x } FV(e1 e2) = FV(e1) U FV(e2) FV(λx.e) = FV(e) – { x } e is a closed λ-term iff FV(e) is empty
7
Free variables ; Return the free variables of an expression ;
(defun fv (e) (cond ((is-v e) (list e)) ((is-a e) (append (fv (a-get-f e)) (fv (a-get-a e)))) ((is-l e) (remove (l-get-v e) (fv (l-get-b e)))) (t (error "Unknown lambda term type")))) (defun free-in (v e) (member v (fv e)))
8
Alpha Renaming λ-terms are equivalent up to renaming of bound variables all occurrences of x are replaced by y The rule of α-conversion λx.e ≡α λy.[y/x]e provided that y is not free in e For instance, λx.x ≡α λy.y λx.y x ≡α λz.y z But not λx.y x ≡α λy.y y
9
Equivalence up to Alpha-conversion
(defun alpha-equivalent (e1 e2) (alpha-equivalent1 e1 e2 nil nil)) (defun alpha-equivalent1 (e1 e2 rpl1 rpl2) (cond ((is-v e1) (and (is-v e2) (let ((new1 (cdr (assoc e1 rpl1))) (new2 (cdr (assoc e2 rpl2)))) (if (and (null new1) (null new2)) (equal e1 e2) (equal new1 new2))))) ((is-a e1) (and (is-a e2) (alpha-equivalent1 (a-get-f e1) (a-get-f e2) rpl1 rpl2) (alpha-equivalent1 (a-get-a e1) (a-get-a e2) rpl1 rpl2))) ((is-l e1) (and (is-l e2) (let* ((new (freshvar)) (old1 (l-get-v e1)) (old2 (l-get-v e2)) (newrpl1 (cons (cons old1 new) rpl1)) (newrpl2 (cons (cons old2 new) rpl2))) (alpha-equivalent1 (l-get-b e1) (l-get-b e2) newrpl1 newrpl2))))))
10
Substitution: [e’ / x] e
Replace free occurrences of x in e with e’ No problem when free variables are replaced by term that “does not clash” [λz.z w / x] λy.x = λy.λz.z w However, there may be a problem if there is name capture/clash [λz.z w / x] λx.x is not the same as λx.λz.z w replacement of a bound variable! [λz.z w / x] λw.x is not the same as λw.λz.z w free variable w is now bound!
11
Definition of Substitution
[e’/x]x = e’ [e’/x]y = y [e’/x](e1 e2) = ([e’/x]e1) ([e’/x] e2) [e’/x](λx.e) = λx.e [e’/x](λy.e) = λy.e if x not in FV(e) [e’/x](λy.e) = λy.[e’/x]e if x in FV(e), y not in FV(e’) [e’/x](λy.e) = λz.[e’/x][z/y]e if x in FV(e), y in FV(e’)
12
Substitution (defun subst-with-in (x e1 exp) (cond ((is-v exp)
(if (equal x exp) e1 exp)) ((is-a exp) (mk-a (subst-with-in x e1 (a-get-f exp)) (subst-with-in x e1 (a-get-a exp)))) ((is-l exp) ; say exp is (lam y e) (let ((y (l-get-v exp)) (e (l-get-b exp))) ((equal x y) exp) ((not (free-in x e)) exp) ((and (free-in x e) (not (free-in y e1))) (mk-l y (subst-with-in x e1 e))) ((and (free-in x e) (free-in y e1)) (let ((z (freshvar))) (mk-l z (subst-with-in x e1 (subst-with-in y z e))))))))))
13
Beta Reduction An application whose LHS is an abstraction
An expression of the form ((λx. e1) e2) is called redex (reducible expression) A redex evaluates to the body of the abstraction with parameter substitution Examples (λx.(x y)) z →β z y (λx. y) z →β y (λx.x x) y →β y y (λx.x x) (λx.x x) →β (λx.x x) (λx.x x) Beta-reduction (λx. e1) e →β [e2/x]e1
14
Beta Reduction (defun is-rdx (e) (and (is-a e) (is-l (a-get-f e))))
(defun rdx-get-v (rdx) (l-get-v (a-get-f rdx))) (defun rdx-get-b (rdx) (l-get-b (a-get-f rdx))) (defun rdx-get-a (rdx) (a-get-a rdx)) ; Beta reduce: (a (l v e) e1) ==> [e1 / v] e (defun beta-reduce (rdx) (subst-with-in (rdx-get-v rdx) (rdx-get-a rdx) (rdx-get-b rdx))) ; Beta reduce if possible (defun beta-reduce-if-redex (e) (if (is-rdx e) (beta-reduce e) e))
15
Properties of Beta Reduction
If e1 → β e2, then (e e1) →β (e e2) (e1 e) →β (e2 e) (λx.e1) →β (λx.e2) The transitive closure of →β e1 →β e2 →β ... →β en e1 reduces to en The induced equivalence relation is denoted ≡β
16
β-Normal Form A λ-term is in β-normal form if it does not have any redex as subexpression meaning: there is no way to apply beta reduction A λ-term e has a β-normal form if for some e’ e ≡β e’ e’ is a β-normal form Some λ-terms do not have any normal form: (λx.xx)(λx.xx) →β [(λx.xx)/x]xx = (λx.xx)(λx.xx) Intuition? loop for ever
17
Beta Reduction (outer)
; Iterate beta reduction on outermost redex ; (defun beta-reduce-outer (e &optional (lim 100)) (cond ((< lim 0) e) ((is-rdx e) (beta-reduce-outer (beta-reduce e) (- lim 1))) ((is-v e) e) ((is-a e) (mk-a (beta-reduce-outer (a-get-f e)) (beta-reduce-outer (a-get-a e)))) ((is-l e) (mk-l (l-get-v e) (beta-reduce-outer (l-get-b e))))))
18
Beta Reduction (inner)
; Iterate beta reduction on inntermost redex ; (defun beta-reduce-inner (e &optional (lim 100)) (cond ((< lim 0) e) ((is-v e) e) ((is-a e) (beta-reduce-if-redex (mk-a (beta-reduce-inner (a-get-f e) lim) (beta-reduce-inner (a-get-a e) lim)))) ((is-l e) (mk-l (l-get-v e) (beta-reduce-inner (l-get-b e) lim)))))
19
Beta Normalization (defun beta-normalize-outer (e &optional (lim 100))
(beta-normalize-param e 'beta-reduce-outer lim)) (defun beta-normalize-inner (e &optional (lim 100)) (beta-normalize-param e 'beta-reduce-inner lim)) (defun beta-normalize-param (e fn &optional (lim 100)) (let* ((res (apply fn (list e lim))) (use-alpha-equivalent t) (stop (if use-alpha-equivalent (alpha-equivalent res e) (equal res e))) (if stop res ; fix point reached (beta-normalize-param res fn))))
20
Properties of Lambda Calculus
If e has a normal form, then this is unique (up to renaming) The β-reduction satisfies the so-called Church-Rosser property if e reduces to e1 and e reduces to e2 then there exists e3 such that e1 reduces to e3 and e2 reduces to e3 Confluence
21
Top level normalization
; try with the two different strategies ; and compare results ; (defun beta-normalize (e) (let ((res-inner (beta-normalize-inner e 10)) (res-outer (beta-normalize-outer e 10))) (if (alpha-equivalent res-outer res-inner) (progn (format t "All right!~%") (format t "Inner: ~A~%" res-inner) (format t "Outer: ~A~%" res-outer)) (format t "Uh oh... results not equivalent!!!") (format t "Outer: ~A~%" res-outer) (error "error in beta-normalize")))))
22
Additional Remarks no distinction between loaded code and submitted code lisp is not case sensitive, use dashes AGetV versus a-get-v use comments (from ; to eol) and indentation submit also the test cases you used to test your program if you don’t have any, this is not a good sign... normalization has to look for redexes on all the term, not only at top level (x (x ((lambda y y) x))) has a redex no need to be destructive unless clearly identified bottleneck! no (quit) at end of file, otherwise interpreter is exited
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.