Download presentation
Presentation is loading. Please wait.
Published byCamron Stanley Modified over 8 years ago
1
Projectile Motion Major Principles for All Circumstances Horizontal motion is constant velocity Vertical motion is constant downward acceleration a = g = -9.8 m/s 2
2
Projectile Motion The Big Four + One More In x x = v x t In y y = v oy t + 1/2 gt 2 v y = v oy + gt v y 2 = v oy 2 + 2gy y = 1/2(v oy + v y )t Ties them together Time & Launch Angle
3
Projectile Motion Types of Projectile Problems Type A -Half of a Parabola Type B - Type C - Full Parabola - Symmetric Partial or Asymmetric Parabola
4
Type A - Half of a Parabola Projectile Motion In the vertical direction The object acts like a dropped object Initial vertical velocity is zero; v oy = 0
5
Type A - Half of a Parabola Projectile Motion To solve for time, often you will use... y = v oy t + 1/2 gt 2 since v oy = 0 y = 1/2 gt 2 t = (2y/g) Therefore... WARNING: Be careful using shortcut formulas!!!!
6
Type A - Half of a Parabola Projectile Motion If the problem is reversed... Romeo throws a rock up to Juliet; hits window horizontally Because of symmetry, just solve the problem backwards, make v oy = 0
7
Projectile Motion Type B - Full Parabola Notice the ball lands back in the truck... only if the truck moves with constant velocity
8
Projectile Motion Type B - Full Parabola If you solve for the full parabola... The vertical displacement is zero; y = 0 The time is the total hang time
9
Projectile Motion Type B - Full Parabola If you solve for half the parabola... The vertical velocity at the peak is; v y = 0 The time is equal to half the hang time
10
Projectile Motion Type B - Full Parabola The Range Formula vovo WARNING: Use the triangle for velocities only!!!! v oy = v o sin v x = v o cos
11
Projectile Motion Type B - Full Parabola The Range Formula v x = v o cos x = v x t x = (v o cos )t v oy = v o sin
12
Projectile Motion Type B - Full Parabola The Range Formula x = v x t v oy = v o sin x = (v o cos )t v y = v oy + gt -v oy = v oy + gt -2v oy = gt -(2v oy )/g = t v y = -v oy -(2v o sin )/g = t
13
Projectile Motion Type B - Full Parabola The Range Formula x = v x t x = (v o cos )t -(2v o sin )/g = t x = (v o cos )(-2v o sin /g)
14
Projectile Motion Type B - Full Parabola The Range Formula x = v x t x = (v o cos )t x = (v o cos )(-2v o sin /g)
15
Projectile Motion Type B - Full Parabola The Range Formula x = v x t x = (v o cos )t x = (v o cos )(-2v o sin /g) x = -v o 2 (2sin cos )/g Trig Identity: 2sin cos = sin2 x = -v o 2 sin2 /g
16
Projectile Motion Type B - Full Parabola The Range Formula x = v x t x = (v o cos )t x = (v o cos )(-2v o sin /g) x = -v o 2 (2sin cos )/g x = -v o 2 sin2 /g
17
Projectile Motion Type B - Full Parabola The Range Formula x = v x t x = (v o cos )t x = (v o cos )(-2v o sin /g) x = -v o 2 (2sin cos )/g x = -v o 2 sin2 /g WARNING: Be careful using shortcut formulas!!!!
18
Optimum Angle of 45 Maximum range Projectile Motion Type B - Full Parabola Supplementary Angles Equal ranges
19
Projectile Motion Type C - Partial or Asymmetric Parabola Each problem is unique, so take your time and... Some problems can be treated as two Type A problems stick to your major principles from the beginning
20
Projectile Motion Type C - Partial or Asymmetric Parabola We don’t know time, but we must find out the height (y) of an object. Very Unique Equation y = v oy t + 1/2gt 2
21
Projectile Motion Type C - Partial or Asymmetric Parabola Very Unique Equation y = v oy t + 1/2gt 2 vovo v oy = v o sin v x = v o cos y = (v o sin )t + 1/2gt 2
22
Projectile Motion Type C - Partial or Asymmetric Parabola Very Unique Equation y = v oy t + 1/2gt 2 vovo v oy = v o sin v x = v o cos y = (v o sin )t + 1/2gt 2 x = v x t x = (v o cos )t x/(v o cos ) = t
23
Projectile Motion Type C - Partial or Asymmetric Parabola Very Unique Equation y = v oy t + 1/2gt 2 y = (v o sin )t + 1/2gt 2 x/(v o cos ) = t y = v o sin (x/(v o cos )) + 1/2g(x/(v o cos )) 2
24
Projectile Motion Type C - Partial or Asymmetric Parabola Very Unique Equation y = v oy t + 1/2gt 2 y = (v o sin )t + 1/2gt 2 y = v o sin (x/(v o cos )) + 1/2g(x/(v o cos )) 2 y = x(sin /cos ) + 1/2g(x 2 /(v o 2 cos 2 )) y = xtan + gx 2 /(2v o 2 cos 2 )
25
Projectile Motion Type C - Partial or Asymmetric Parabola Very Unique Equation y = v oy t + 1/2gt 2 y = (v o sin )t + 1/2gt 2 y = v o sin (x/(v o cos )) + 1/2g(x/(v o cos )) 2 y = x(sin /cos ) + 1/2g(x 2 /(v o 2 cos 2 )) y = xtan + gx 2 /(2v o 2 cos 2 ) Works for all types of problems, !! Most useful with Type C!!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.