Download presentation
Presentation is loading. Please wait.
Published byRosamund Griffith Modified over 8 years ago
1
1 Influence Lines for Beams Influence Lines for Floor Girders Influence Lines for Trusses Maximum Influence at a Point Due to a Series of Concentrated Loads Absolute Maximum Shear and Moment INFLUENCE LINES FOR STATICALLY DETERMINATE STRUCTURES
2
2 Influence Line Unit moving load A B
3
3 Example 6-1 Construct the influence line for a) reaction at A and B b) shear at point C c) bending moment at point C d) shear before and after support B e) moment at point B of the beam in the figure below. B A C 4 m
4
4 SOLUTION Reaction at A + M B = 0: 1 4 m 8 m12 m -0.5 0.5 AyAy x A C 4 m8 m AyAy ByBy 1 x 0 4 8 12 x 1 0.5 0 -0.5 AyAy
5
5 A C 4 m AyAy ByBy 8 m Reaction at B + M A = 0: 1 x 4 m8 m12 m ByBy x 1.5 1 0.5 0 4 8 12 x 0 0.5 1 1.5 ByBy
6
6 Shear at C A C 4 m AyAy ByBy 1 x F y = 0: + + VCVC MCMC VCVC MCMC A C x 4 m A C 1 x
7
7 0 4-4- 4+4+ 8 12 xVCVC 0 -0.5 0.5 0 -0.5 4 m 8 m12 m VCVC x -0.5 0.5 -0.5 A C 4 m AyAy ByBy 1 x
8
8 Bending moment at C A C 4 m AyAy ByBy 1 x VCVC MCMC VCVC MCMC + M C = 0: + A C x 4 m A C 1 x
9
9 0 4 8 12 xMCMC 0 2 0 -2 4 m 8 m12 m MCMC x 2 -2 A C 4 m AyAy ByBy 1 x
10
10 Or using equilibrium conditions: Reaction at A + M B = 0: 1 4 m 8 m12 m -0.5 0.5 AyAy x A C 4 m8 m AyAy ByBy 1 x 0 4 8 12 x 1 0.5 0 -0.5 AyAy
11
11 Shear at C A C 4 m AyAy ByBy 1 x F y = 0: + + VCVC MCMC A C x 4 m VCVC MCMC A C 1 x
12
12 1 4 m 8 m12 m -0.5 0.5 AyAy x -0.5 VCVC 8 m12 m x 4 m 0.5 -0.5 B A C 4 m
13
13 Bending moment at C A C 4 m AyAy ByBy 1 x + M C = 0: VCVC MCMC A C x 4 m VCVC MCMC A C 1 x + M C = 0:
14
14 2 1 4 m 8 m12 m -0.5 0.5 AyAy x 4 m 8 m12 m MCMC x -2 B A C 4 m
15
15 Shear before support B A C 4 m AyAy ByBy 1 x 1 8 m12 m -0.5 0.5 AyAy x -0.5 V B - = A y V B - = A y -1 1 AyAy 8 m VB-VB- MBMB x AyAy VB-VB- MBMB V B- x -0.5
16
16 Shear after support B A C 4 m AyAy ByBy 1 x 1 8 m12 m -0.5 0.5 AyAy x V B+ x 1 V B + = 0 4 m VB+VB+ MBMB 1 V B + = 1 4 m VB+VB+ MBMB
17
17 Moment at support B A C 4 m AyAy ByBy 1 x 1 8 m12 m -0.5 0.5 AyAy x -4 MBMB x 1 M B = 8A y -(8-x) M B = 8A y 1 AyAy 8 m VB-VB- MBMB x AyAy VB-VB- MBMB
18
18 P = 1 Reaction Influence Line for Beam C A B P = 1 AyAy ByBy y = 1 C A B L
19
19 y = 1 C A B P = 1 AyAy ByBy C A B L
20
20 L A B a - Pinned Support RARA RARA x 1 b C AB
21
21 AB AB ab L RARA RARA x 1 1 - Fixed Support
22
22 Shear C AB P = 1 a b L y =1 yL yR A B VCVC VCVC P = 1 AyAy ByBy y =1
23
23 L A B a VCVC VCVC VCVC x 1 b L -a L 1 Slope s A = 1 L Slope s B = 1 L Slope at A = Slope at B - Pinned Support b C AB
24
24 AB ab L A B VBVB VBVB VBVB x 11 - Fixed Support
25
25 Bending Moment a b L 1 A B MCMC MCMC P = 1 AyAy ByBy h C AB
26
26 a L A B Hinge MCMC MCMC ba A = b L B=B= a L C = A + B = 1 MCMC x ab L - Pinned Support b C AB
27
27 AB ab L A B MCMC MCMC MBMB x 1 -b - Fixed Support
28
28 General Shear x V BL x VCVC -1/4 3/4 1 x VDVD -2/4 2/4 1 -3/4 x VEVE 1/4 1 A CDEBFGH L L/4
29
29 x V BL x VGVG 1 x VFVF 1 x V BR 1 A CDEBFGH L L/4
30
30 General Bending Moment s A = 3/4 s B = 1/4 = s A + s B = 1 s A = 1/2 s B = 1/2 = s A + s B = 1 s A = 1/4 s B = 3/4 = s A + s B = 1 x MCMC 3/16 x MDMD 4/1 6 x MEME 3/1 6 A CDEBFGH L L/4
31
31 x MBMB 3L/4 1 x MGMG L/4 1 x MFMF 2L/4 1 A CDEBFGH L L/4
32
32 Example 6-2 Construct the influence line for - the reaction at A, C and E - the shear at D - the moment at D - shear before and after support C - moment at point C A B C D E 2 m 4 m Hinge
33
33 A C D E 2 m 4 m B RARA x 1 RARA SOLUTION
34
34 A C D E 2 m 4 m B RCRC RCRC x 1 8/6 4/6
35
35 A B C D E 2 m 4 m RERE RERE x -2/6 2/6 1
36
36 A B C D E 2 m 4 m VDVD VDVD VDVD x 1 2/6 1 s E = s C s E = 1/6 s C = 1/6 = -2/6 = 4/6
37
37 Or using equilibrium conditions: V D = 1 -R E 1 VDVD x 2/6 -2/6 4/6 RERE VDVD MDMD 4 m 1 x V D = -R E RERE VDVD MDMD 4 m RERE x -2/6 1 2/6 A B C D E 2 m 4 m Hinge
38
38 A B C D E 2 m 4 m 4 -1.33 MDMD x (2)(4)/6 = 1.33 D = C + E = 1 C = 4/6 2 2/6 = E MDMD MDMD
39
39 Or using equilibrium conditions: M D = -(4-x)+4R E 1 RERE VDVD MDMD 4 m 1 x M D = 4R E RERE VDVD MDMD 4 m RERE x -2/6 1 2/6 MDMD x -8/6 8/6 A B C D E 2 m 4 m Hinge
40
40 A B C D E 2 m 4 m V CL x
41
41 A B C D E 2 m 4 m Or using equilibrium conditions: 1 RARA x 1 V CL = R A - 1 V CL x V CL = R A RARA 1 V CL MBMB RARA MBMB
42
42 A B C D E 2 m 4 m V CR x 1 0.333 0.667
43
43 A B C D E 2 m 4 m Or using equilibrium conditions: 1 V CR x 0.333 1 0.667 RERE x -2/6 = -0.333 1 2/6=0.33 V CR = -R E RERE V CR MCMC V CR = 1 -R E RERE V CR MCMC 1
44
44 A B C D E 2 m 4 m MCMC MCMC MCMC x 1 -2
45
45 A B C D E 2 m 4 m MCMC x 1 -2 Or using equilibrium conditions: 1 RERE x -2/6 = -0.333 1 2/6=0.33 M C = 6R E RERE V CR MCMC 6 m RERE V CR MCMC 1
46
46 Example 6-3 Construct the influence line for - the reaction at A and C - shear at D, E and F - the moment at D, E and F Hinge AB CD EF 2 m
47
47 SOLUTION RARA RARA x 1 1 0.5 -0.5 2 m A B CD E F
48
48 2 m AB C D E F RCRC x RCRC 1 0.5 1.5 2
49
49 2 m AB C D E F VDVD VDVD VDVD x 0.5 -0.5 1 1 = =
50
50 AB CD E 2 m F VEVE VEVE VEVE x 1 -0.5 0.5 -0.5 = =
51
51 2 m AB CD E F VFVF VFVF VFVF x 1 = =
52
52 2 m AB CD E F MDMD MDMD MDMD x -2-2 D = 1 1 2
53
53 2 m AB CD E F E = 1 MEME MEME MEME x C = 0.5 B = 0.5 (2)(2)/4 = 1 -2
54
54 2 m AB CD E F MEME MEME MFMF x F = 1 -2
55
55 Example 6-4 Determine the maximum reaction at support B, the maximum shear at point C and the maximum positive moment that can be developed at point C on the beam shown due to - a single concentrate live load of 8000 N - a uniform live load of 3000 N/m - a beam weight (dead load) of 1000 N/m 4 m A B C
56
56 0.5(12)(1.5) = 9 SOLUTION RBRB x 1 1.5 0.5 = 48000 N = 48 kN (R B ) max + (8000)(1.5)= (1000)(9)+ (3000)(9) 8000 N 1000 N/m 3000 N/m 4 m A B C
57
57 0.5(4)(-0.5) = -1 0.5(4)(0.5) = 1 0.5(4)(-0.5) = -1 = (1000)(-2+1) 4 m A B C VCVC x 0.5 -0.5 1000 N/m (V C ) max + (8000)(-0.5) = -11000 N = 11 kN + (3000)(-2) -0.5 3000 N/m 8000 N
58
58 8000 N 3000 N/m 1000 N/m (1/2)(4)(2) = 4 +(1/2)(8)(2) = 8 4 m A B C 3000 N/m (M C ) max positive = (8000)(2) = 44000 Nm = 44 kNm + (8-4)(1000)+ (3000)(8) MCMC x 2 -2
59
59 ABCDEF G H Influence Line for Girder Forces Apply to the Girder (b/L)P1(b/L)P1 (a/L)P1(a/L)P1 P2P2 P1P1 ab P2P2 L A B P 1 D P 2 A BC DE F G H
60
60 A BC DE F G H Reaction 1 0.5 RGRG RHRH RHRH 1
61
61 A BC DE F G H RGRG 1 0.5 RGRG 11 RHRH
62
62 A BC DE F G H Shear L abbb 1 0.5 1 1 VCVC VCVC VCVC x 2b/L -(a+b)/L 1
63
63 A BC DE F G H L V CD 1 0.5 1 V CD x -a/L b/L ab
64
64 A BC DE F G H Bending Moment L ab ab/L 1 0.5 MCMC x 1 1 MCMC MCMC
65
65 A BC DE F G H L MFMF x 1 0.5 1 MFMF MFMF ab ab/L
66
66 Example 6-5 Draw the influence for - the Reaction R G and R F - Shear V CD - the moment M C and M H 1.5 m A BC DE H F 3 m G
67
67 1 1.5 m A BC DE H F 3 m G RGRG x RGRG 1.333 0.667 0.333
68
68 1.5 m A BC DE H F 3 m G RFRF x RFRF 1 0.667 0.333 -0.333
69
69 1.5 m A BC DE H F 3 m G V CD x 1 0.5 4.5/9 -4.5/9 0.333 -0.333 0.333
70
70 1.5 m A BC DE H F 3 m G MCMC MCMC 1 1 MCMC x (3)(6)/9 = 2 -2 1
71
71 1.5 m A BC DE H F 3 m G MHMH MHMH 1 0.5 MHMH x (4.5)(4.5)/9 = 2.25 1.5 -1.5
72
72 Example 6-6 Draw the influence line diagrams of girder for - the reaction at C and G, - shear at E and H, - bending moment at H. A G B 6 @ 4 m = 24 m C DE FH 2 m
73
73 A G B 6 @ 4 m = 24 m C DE FH2 m SOLUTION RCRC RCRC 1 1 1 0.75 0.50 0.25 1.25
74
74 A G B 6 @ 4 m = 24 m C DE FH2 m RGRG RGRG 1 1 1 0.25 0.50 0.75 -0.25
75
75 A G B 6 @ 4 m = 24 m C DE FH2 m VEVE 1 1 1 1 VEVE VEVE 8/16 = 0.5 -8/16 = 0.5 -0.25 0.25 8 m
76
76 A G B 6 @ 4 m = 24 m C DE FH2 m 6/16 = 0.375 -10/16 = 0.625 VHVH 1 1 VHVH VHVH 1 0.5 -0.25 0.25 -0.50 10 m 6 m
77
77 A G B 6 @ 4 m = 24 m C DE FH2 m MHMH 1 1 1 0.5 MHMH MHMH (10)(6)/16 = 3.75 1.50 2.50 -1.50 3 10 m 6 m
78
78 Draw the influence for - the Reaction R G and R H - Shear V C and V CD - the moment M C, M D, and M F and determine the maximum for - the Reaction (R G ) max and (R H ) max - Shear (V CD ) max due to - a uniform dead load 2 kN/m - a uniform live load 5 kN/m - a concentrated live load 50 kN Example 6-7 2 m 4 m 2 m A BC DE F G H
79
79 2 m 4 m 2 m A BC DE F G H RGRG 1 0.5 10/14 6/14 2/14 1/14 RGRG 11 RHRH
80
80 2 m 4 m 2 m A BC DE F G H 1 0.5 RGRG RHRH RHRH 1 12/14 8/14 4/14 6/14
81
81 2 m 4 m 2 m A BC DE F G H VCVC VCVC 1 0.5 VCVC x 8/14 -6/14 1 1 1 -2/14 4/14 -1/14
82
82 -8/14 6/14 2 m 4 m 2 m A BC DE F G H VFVF VFVF 1 0.5 1 V CD x -1/14 -2/14 -6/14 4/14
83
83 2 m 4 m 2 m A BC DE F G H (6)(8)/14 = 3.43 1 0.5 MCMC x (4/8)(3.43) (2/6)(3.43) 1 1 MCMC MCMC
84
84 2 m 4 m 2 m A BC DE F G H 1 0.5 1 1 MDMD x (10)(4)/14 = 2.86 (6/10)(2.86) (2/10)(2.86) MDMD MDMD
85
85 (8)(6)/14=3.428 2 m 4 m 2 m A BC DE F G H MFMF x 1 0.5 1 2.285 2.571 0.857 0.429 MFMF MFMF
86
86 [0.5×4 (2/14)] + [(0.5)(2/14 + 1)(12) = 7.143 RGRG 1 10/14 6/14 2/14 1/14 Maximum Reaction 2 kN/m 5 kN/m 50 kN (R G ) max = (2)(7.143) + (5)(7.143)+ (50)(1) = 100 kN 2 m 4 m 2 m A BC DE F G H
87
87 2 m 4 m 2 m A BC DE F G H (0.5)(16)(12/14) = 6.857 RHRH 12/14 8/14 4/14 6/14 Maximum Reaction 2 kN/m 5 kN/m 50 kN (R H ) max = (2)(6.857)+ (5)(6.857)+ (50)(12/14) = 90.86 kN
88
88 2 m 4 m 2 m A BC DE F G H + (0.5)(5.6)(4/14) = + 0.8 -[0.5(4)(2/14) + 0.5(2/14) + (6/14)(4) + 0.5(2.4)(6/14)] = -1.943 2.4 m V CD -1/14 -2/14 -6/14 4/14 Maximum Shear 2 kN/m 5 kN/m 50 kN (V CD ) max =(2)(-1.943 + 0.8)(5)(-1.943)+ (50)(-6/14) = -33.43 kN
89
89 Influence Line for Trusses RARA x 1 RERE x 1 (3/4) (2/4) (1/4) (2/4) (3/4) (1/4) A BC E G H D F 4 @ x m h
90
90 A BC E G H D F 4 @ x m h 1 kN Consider the right hand F CB RERE F GB F GH F BC x (2x/h)(1/4) + M G = 0: RERE x 1 (2/4) (3/4) (1/4)
91
91 A BC E G H D F 4 @ x m h 1 kN Consider the left hand F HG F BC RARA F BG + M G = 0: F BC x (2x/h)(1/4) RARA x 1 (3/4) (2/4) (1/4) (2x/h)(1/4) (2x/h)(2/4)
92
92 Determine the maximum force developed in member BC, BG,and CG of the truss due to the wheel loads of the car. Assume the loads are applied directly to the truss. the wheel loads of the car 4 kN1.5 kN 2 m Example 6-8 A BC E G H 4 m D F 3 m
93
93 RARA x 1 0.75 0.5 0.25 RERE x 0.5 0.75 0.25 1 SOLUTION A BC E G H 4 m D F 3 m
94
94 A BC E G H 4 m D F 3 m Influence Line for F BC 1 kN Consider the right hand F BC = (6/4) R E = 1.5 R E F CB RERE F GB F GH RERE x 0.5 0.75 0.25 1 F BC x 1.5(0.25) = 0.375 + M G = 0:
95
95 A BC E G H 4 m D F 3 m 0.375 1.5(0.5) = 0.75 1 kN Consider the left hand F HG F BC RARA F BG RARA x 1 0.75 0.5 0.25 F BC = 1.5 R A F BC x 0.375 + M G = 0:
96
96 A BC E G H 4 m D F 3 m RERE x 0.5 0.75 0.25 1 Influence Line for F BG 1 kN Consider the right hand F y = 0 ; F BG cos = R E F GH F GB F CB RERE F BG = 1.25 R E F BG (4/5) = R E 1.25(0.25) = 0.3125 F BG x
97
97 A BC E G H 4 m D F 3 m 1 kN Consider the left hand F y = 0 ; F BG cos + R A = 0 RARA x 1 0.75 0.5 0.25 F HG F BC RARA F BG 0.3125 F BG x F BG = -1.25 R A F BG (4/5) = -R A -0.3125 -1.25(0.5) = -0.625
98
98 A BC E G H 4 m D F 3 m F CG x Influence Line for F CG 1 kN 0 0
99
99 A BC E G H 4 m D F 3 m F CG x 1 kN 1 1
100
100 A BC E G H 4 m D F 3 m (F BC ) max by Loads (F BC ) max = (4)(0.75)+ (1.5)(0.5) = 3.75 kN # 0.375 0.75 F BC x 0.375 4 kN1.5 kN 2 m 0.5
101
101 A BC E G H 4 m D F 3 m (F BG ) max by Loads (F BG ) max = (4)(-0.625)+ (1.5)(-0.417) = -3.126 kN # F BG x -0.3125 0.3125 -0.625 4 kN1.5 kN 2 m -0.417
102
102 A BC E G H 4 m D F 3 m (F CG ) max by Loads F CG x 1 0.333 (F CG ) max = (4)(1)+ (1.5)(0.333) = 4.50 kN # 4 kN1.5 kN 2 m
103
103 Maximum Influence at a Point Due to a Series of Concentrated Loads F2F2 x1x1 x2x2 F1F1 F3F3 x MCMC ab/L VCVC x (b/L) (-a/L) A B C ab
104
104 A B C ab x MCMC ab/L F2F2 x1x1 x2x2 F1F1 F3F3 VCVC x (b/L) (-a/L)
105
105 A B C ab VCVC x (b/L) (-a/L) x MCMC ab/L F2F2 x1x1 x2x2 F1F1 F3F3
106
106 A B C ab VCVC x (b/L) (-a/L) x MCMC ab/L F2F2 x1x1 x2x2 F1F1 F3F3
107
107 VCVC x 0.75 -0.25 4 kN 1 m3 m 1 kN 6 kN Shear A B C 2 m6 m
108
108 Case 1 VCVC x 0.75 -0.25 4 kN 1 m3 m 1 kN 6 kN 0.625 0.25 (V C ) 1 = 1(0.75) + 4(0.625) + 6(0.25) = 4.75 kN A B C 2 m6 m
109
109 Case 2 VCVC x 0.75 -0.25 4 kN 1 m3 m 1 kN 6 kN (V C ) 2 = 1(-0.125) + 4(0.75) + 6(0.375) = 5.125 kN -0.125 0.375 A B C 2 m6 m
110
110 Case 3 VCVC x 0.75 -0.25 4 kN 1 m3 m 1 kN 6 kN (V C ) 3 = 6(0.75) = 4.5 kN (V C ) max = (V C ) 2 = 5.125 kN A B C 2 m6 m
111
111 The critical position of the loads can be determined in a more direct manner by finding the change in shear, V, which occurs when the load are moved from Case 1 to Case 2, then from Case 2 to Case 3, and so on.If the slope of the influence line is s, then (y 2 - y 1 ) = s(x 2 - x 1 ), and therefore V = Ps(x 2 - x 1 ) Sloping Line ----------(6-1) If the load moves past a point where there is a discontinuity or “jump” in the influence line, as point C, then the change in shear is simply V = P(y 2 - y 1 ) Jump ----------(6-2)
112
112 A B C 2 m6 m 4 kN 1 m3 m 1 kN 6 kN VCVC x 0.75 -0.25 V 1-2 = 1(-0.25 - 0.75) + 1(1/8)(1) + 4(1/8)(1) + 6(1/8)(1) = 0.375 kN (V C ) 2 = (V C ) 1 + V 1-2 = 4.75 + 0.375 = 5.125 kN s = 1/8
113
113 4 kN 1 m3 m 1 kN 6 kN VCVC x 0.75 -0.25 V 2-3 = 1(1/8)(1) + 4(-0.25-0.75) + 4(1/8)(2) + 6(1/8)(3) = -0.625 kN (V C ) 3 = (V C ) 2 + V 2-3 = 5.125 -0.625 = 4.5 kN s = 1/8 A B C 2 m6 m
114
114 4 kN 1 m3 m 1 kN 6 kN Moment MCMC x (2)(6)/8 = 1.5 A B C 2 m6 m
115
115 Case 1 MCMC x 1.5 1.25 0.5 (M C ) 1 = 1(1.5) + 4(1.25) + 6(0.5) = 9.5 kNm 4 kN 1 m3 m 1 kN 6 kN A B C 2 m6 m
116
116 Case 2 MCMC x 1.5 (M C ) 2 = 1(0.75) + 4(1.5) + 6(0.75) = 11.25 kNm 0.75 4 kN 1 m3 m 1 kN 6 kN A B C 2 m6 m
117
117 Case 3 MCMC x 1.5 (M C ) 3 = 6(1.5) = 9 kNm (M C ) max = (M C ) 2 = 11.25 kNm 4 kN 1 m3 m 1 kN 6 kN A B C 2 m6 m
118
118 We can also use the foregoing methods to determine the critical position of a series of concentrated forces so that they create the largest internal moment at a specific point in a structure. Of course, it is first necessary to draw the influence line for the moment at the point and determine the slopes s of its line segments. For a horizontal movement (x 2 - x 1 ) of a concentrated force P, the change in moment, M, is equivalent to the magnitude of the force times the change in the influence-line ordinate under the load, that is M = Ps(x 2 - x 1 ) Sloping Line ----------(6-3)
119
119 = 1.75 kNm = 11.25 kNm MCMC x 1.5 4 kN 1 m3 m 1 kN 6 kN A B C 2 m6 m
120
120 MCMC x 1.5 = -2.25 kNm = 9 kNm 4 kN 1 m3 m 1 kN 6 kN A B C 2 m6 m
121
121 Example 6-9 Determine the maximum shear created at point B in the beam shown in the figure below due to the wheel loads of the moving truck. 4 kN 9 kN 15 kN10 kN 1 m2 m A C B 4 m
122
122 A C B 4 m SOLUTION -0.5 0.5 VBVB x 4 kN 9 kN 15 kN10 kN 1 m2 m V BR = 4(0.5) + 9(0.375) + 15(0.125) = 7.25 kN 0.125 0.375 V BL = 4(-0.5) + 9(0.375) + 15(0.125) = 3.25 kN Case 1
123
123 -0.5 0.5 VBVB x 4 kN 9 kN 15 kN10 kN 1 m2 m -0.375 0.25 V BR = 4(-0.375) + 9(0.5) + 15(0.25) + 10(0) = 6.75 kN V BL = 4(-0.375) + 9(-0.5) + 15(0.25) + 10(0) = -2.25 kN Case 2 A C B 4 m
124
124 -0.5 0.5 VBVB x 4 kN 9 kN 15 kN10 kN 1 m2 m 0.25 -0.25 -0.125 V BR = 4(-0.125) + 9(-0.25) + 15(0.5) + 10(0.25) = 7.25 kN V BL = 4(-0.125) + 9(-0.25) + 15(-0.5) + 10(0.25) = -7.75 kN Case 3 A C B 4 m
125
125 -0.5 0.5 VBVB x 4 kN 9 kN 15 kN10 kN 1 m2 m -0.25 V BR = 9(0) + 15(-0.25) + 10(0.5) = 1.25 kN V BL = 9(0) + 15(-0.25) + 10(-0.5) = -8.75 kN The maximum shear created at point B is -8.75 kN Case 4 A C B 4 m
126
126 Case 1V BR = 7.25 kN Case 2V BR = 6.75 kN Case 3V BR = 7.25 kN Case 4V BR = 1.25 kN 4 kN 9 kN 15 kN10 kN 1 m2 m -0.5 0.5 VBVB x Summary 1-m Movement of 4 kN, VB = 6.75-7.25 = - 0.5 kN 2-m Movement of 9 kN, VB = 7.25-6.75 = + 0.5 kN 2-m Movement of 15 kN, VB = 1.25-7.25 = - 6 kN A C B 4 m
127
127 Or using the sloping line -0.5 0.5 VBVB x 4 kN 9 kN 15 kN10 kN 1 m2 m A C B 4 m
128
128 4 kN 9 kN 15 kN 10 kN 1 m2 m -0.5 0.5 VBVB x A C B 4 m 4 kN9 kN 15 kN 10 kN 1 m2 m = +0.5 kN 2-m Movement of 9 kN = -6 kN 2-m Movement of 15 kN = -0.5 kN 1-m Movement of 4 kN The correct position of the loads. A C B 4 m 4 kN 9 kN 15 kN 10 kN 1 m2 m 4 kN 9 kN 15 kN 10 kN 1 m2 m
129
129 -0.5 0.5 VBVB x V BR = 9(0) + 15(-0.25) + 10(0.5) = 1.25 kN V BL = 9(0) + 15(-0.25) + 10(-0.5) = -8.75 kN The maximum shear created at point B is -8.75 kN (-0.25) 4 kN 9 kN 15 kN 10 kN 1 m2 m A C B 4 m
130
130 Example 6-10 Determine the maximum positive moment and negative moment created at point B in the beam shown in the figure below due to the wheel loads of the crane. AC B 2 m 3m3m 3 kN 8 kN 4 kN 2 m3 m
131
131 x MBMB 2(3)/5 = 1.2 -0.8 ACB 2 m 3m3m 3 kN 8 kN 4 kN 2 m3 m SOLUTION M B = 3(1.2) + 8(0) = 3.6 kNm Positive moment CASE I
132
132 ACB 2 m 3m3m 3 kN 8 kN 4 kN 2 m3 m x MBMB 1.2 -0.8 M B = 8(1.2) + 3(0.4) = 10.8 kNm 0.4 CASE II
133
133 ACB 2 m 3m3m 3 kN 8 kN 4 kN 2 m3 m x MBMB 1.2 -0.8 M B = 4(1.2) + 8(0) + 3(-0.8) = 2.4 kNm The maximum positive moment created at point B is 10.8 kNm CASE III
134
134 ACB 2 m 3m3m 3 kN 8 kN 4 kN 2 m3 m x MBMB 1.2 -0.8 M B = 8(-0.8) + 4(0.4) = -4.8 kNm Negative moment 0.4 CASE I
135
135 3 kN 8 kN 4 kN 2 m3 m x MBMB 1.2 -0.8 M B = 4(-0.8) = -3.2 kNm ACB 2 m 3m3m The maximum negative moment created at point B is 4.8 kNm CASE II
136
136 Absolute Maximum Shear and Moment L CL L/2 FRFR x F1F1 F2F2 F3F3 d1d1 d2d2 2 AB AyAy ByBy
137
137 A (L/2 - x) F1F1 d1d1 V2V2 M2M2 For maximum M 2 we require 2
138
138 L AB CL L/2 F1F1 F2F2 F3F3 x1x1 x2x2 FRFR
139
139 FRFR F1F1 F2F2 F3F3 x1x1 x2x2 b b FRFR F1F1 F2F2 F3F3 x1x1 x2x2 b b a b M x L AB
140
140 FRFR F1F1 F2F2 F3F3 x1x1 x2x2 a a FRFR F1F1 F2F2 F3F3 x1x1 x2x2 a a a b M x The absolute maximum moment is comparison by M S1 and M S2. L AB
141
141 1200 kg 400 kg 8 m Example 6-11 Determine the absolute maximum moment on the simply supported beam cased by the wheel loads. 30 m A B
142
142 CL 15 m 1200 kg 400 kg 8 m 1600 kg M @1200 kg = 0 : A B
143
143 CL M S =(1200)(7.47) + (400)(3.74) = 10460 kgm 14 m 16 m M 1200 x (14)(16)/30 = 7.47 3.74 + M B = 0: Global: A y = 746.67 kg 1600 kg 1200 kg 400 kg 6 m 2 m a a 1 m 1 A 14 m 1 A y = 746.67 kg V1V1 M1M1 + M 1 = 0: M 1 = 10453.38 kgm Or using equilibrium conditions: A B
144
144 b b 3 m CL M S =(1200)(4)+ (400)(7.2)= 7680 kgm By comparison, M max = 10460 kgm M 400 (18)(12)/30 = 7.2 x 4 18 m 12 m b b 3 m 1600 kg 1200 kg 400 kg 6 m 2 m 1600 kg 1200 kg 400 kg 6 m 2 m A B
145
145 4.6 T8.2T 4.2 m 1.2 m Example 6-12 Determine the absolute maximum moment on the simply supported beam cased by the wheel loads. 20 m A B
146
146 4.6 T8.2T 4.2 m 1.2 m M @ 4.6 T = 0 : F R =21 T 20 m A B
147
147 A B 4.6 T8.2T F R =21 T 4.2 m 1.2 m 1.875 m 10 m CL M 4.6T x a = 8.125 m b = 11.875 m 4.82 3.12 2.63 M S =(4.6)(4.82)+ (8.2)(3.12) = 69.32 Tm + (8.2)(2.63)
148
148 4.6 T8.2T F R =21 T 4.2 m 1.2 m 0.225 m CL 10 m M 8.2T x a = 10.225 m b = 9.775 m 5 2.95 4.39 M S =(4.6)(2.95)+ (8.2)(5) = 90.57 Tm + (8.2)(4.39) By comparison, M max = 90.57 Tm + M B = 0: Global: A y = 10.74 T Or using equilibrium conditions: 2 + M 2 = 0: M 2 = 90.50 Tm A 10.225 m 2 A y = 10.74 T V2V2 M2M2 4.6 T 4.2 m A B
149
149 Example 6-13 Determine the absolute maximum moment on the simply supported beam cased by the wheel loads. 4 kN 9 kN 15 kN10 kN 1 m2 m A B 4 m
150
150 SOLUTION M @ 4 kN = 0 : 4 kN 9 kN 15 kN10 kN 1 m2 m F R =38 kN 1.74 m 0.26 m A B 4 m
151
151 a = 3.13 mb = 4.87 m x M 9 kN (3.13)(4.87)/8 = 1.91 1.13 0.34 1.30 M S = 4(1.30) + 9(1.91) + 15(1.13) + 10(0.34) = 42.74 kNm 4 kN 9 kN 15 kN10 kN 1 m2 m F R =38 kN 0.87 A B 4 m
152
152 FRFR 0.13 m 4 kN 9 kN 15 kN10 kN 1 m2 m 0.13 m a = 4.13 mb = 3.87 m x M 15 kN (4.13)(3.87)/8 = 2.0 1.03 0.55 0.97 M S = 4(0.55) + 9(1.03) + 15(2.0) + 10(0.97) = 51.17 kNm By comparison, M max = 51.17 kNm 3 + M A = 0: Global: B y = 18.38 kN Or using equilibrium conditions: B 2 m 15 kN 10 kN 3 18.38 kN 3.87 m V3V3 M3M3 + M 3 = 0: -M 3 -10(2) + 18.38(3.87) = 0 M 3 = 51.13 kNm A B 4 m
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.