Presentation is loading. Please wait.

Presentation is loading. Please wait.

前回のSummary Path Integral Quantization path Integral

Similar presentations


Presentation on theme: "前回のSummary Path Integral Quantization path Integral"— Presentation transcript:

1 前回のSummary Path Integral Quantization path Integral generating functional

2 Gauge Theory for gauge field & spinor field Assume Lorentz inv., locality, superficial renormalizability & local gauge symmetry with Lie group G. Lie algebra g. gauge transformation b i :parameter, depends on xm Xi: generator of G f ijk: structure constants of G T i: representation of Xi on y Lagrangian field strength covariant derivative

3 SU(3)=group of complex 3×3 matrices U
example     SU(3)=group of complex 3×3 matrices U withUU †=1 (unitary) & det U = 1 (special) generator li Gell-mann matrices commutators f ijkは完全反対称 irreducible representations are specified by two integers 1 2 3 6 10 3* 8 15 6* 15* 27 10* ......

4 Path intdegral quantization of gauge theories
としてみる ∂mKmn =-∂n∂2+∂2∂n =0 generating functional ∂m is inappropriate does not exist. ∂m = = need gauge fixing ∂l 矛盾 we choose the gauge with (K-1)mn does not exist.

5 gauge fixing need gauge fixing we choose the gauge with

6 gauge fixing xi = = yj

7 gauge fixing = Gm i (gauge不変性より) = 無限大の定数 物理はBi によらない 無限大の定数 =

8

9 Grassman number Faddeev Popov ghost

10 fermionも加える Lagrangian

11 fermionも加える Lagrangian


Download ppt "前回のSummary Path Integral Quantization path Integral"

Similar presentations


Ads by Google