Download presentation
Presentation is loading. Please wait.
Published byYolanda Bustos Olivares Modified over 8 years ago
1
Concepto de Porcentaje
2
1.- Concepto de porcentaje La expresión porcentaje o tanto por ciento equivale a “tantos de cada 100”. Es decir, hablar del 40% es hablar de 40 de cada 100. Teniendo en cuenta lo anterior, para hallar un tanto por ciento de una cantidad deberíamos dividir primero por 100 para ver cuántos cientos hay en la cantidad y después multiplicaríamos por el tanto por ciento. Así, para hallar el 35% de 420 haríamos lo siguiente: 420 : 100 = 4.2 En la práctica lo haremos de otras formas pero esta idea nos puede venir bien para calcular mentalmente –o con cálculos sencillos- tantos por cientos en los que aparecen ceros al final de las cantidades. Recuerda que para dividir por 100 un número que acaba en ceros lo que hacemos es quitar dos ceros. Por ello, para calcular estos porcentajes quitaremos dos ceros y multiplicaremos las cantidades resultantes: 4% de 600 = 4 X 6 = 24 20% de 60 = 30% de 50 = 3 X 5 = 1540% de 500 = 40 X 5 = 200 8% de 2000 =4% de 50 =2. 6 = 128. 20 = 1604. 0.5 = 2 (*) 4.2 X 35 = 147
3
2.- Cálculo de porcentajes: porcentaje como fracción Hemos visto que 40% es lo mismo que 40 de cada 100. Pero resulta que 40 de cada 100 también lo podemos expresar en forma de fracción: 40/100. Es decir, 40% = Por ello, hallar el 40% de 600 será lo mismo que calcular de 600. En la práctica procederemos así: 35 % de 60 =21 A esta forma de calcular porcentajes la llamaremos porcentaje como fracción o también “con lápiz y papel” 28% de 420 =117,6 150% de 36 = 54
4
3.- Cálculo de porcentajes: porcentaje como regla de tres Podemos interpretar el cálculo de un porcentaje como un problema de proporcionalidad directa. Por ello, también podremos calcularlos por medio de una regla de tres. Ejemplo: Calcular 40% de 650 Total Parte 100 ------ 40 650 ------ x Esta forma de calcular los porcentajes es particularmente útil para resolver algunos problemas.
5
4.- Cálculo de porcentajes: con calculadora Calcular 35% de 60 CALCULADORA NO CIENTÍFICA Deberás teclear: 60 x 35 % y aparecerá el resultado en la pantalla 21 CALCULADORA CIENTÍFICA La secuencia de teclas depende del modelo de calculadora. Para la Casio es: 60 x 35 SHIFT = SHIFT activa la segunda función de las teclas Tecla = contiene % como segunda función SHIFT = % SHIFT + = %
6
6.- Cálculo de porcentajes: resumen 50 % de 300 a) Con lápiz y papel (porcentaje como fracción): 50% de 300 =150 b) Como regla de tres: 50% de 300 Total Parte 100 ------ 50 300 ------ x d) Mentalmente (con números que acaban en ceros): 50% de 300 = 50. 3 = 150 x =150 c) Con calculadora: 50% de 300 => e) Cálculo rápido (sólo en determinados casos): 50% de 300 = 300 : 2 = 150 50 x 300 % =150
7
7.-Problemas de porcentajes 1 Asignaremos nombres a los diferentes elementos que integran el cálculo de un tanto por ciento: 30% de 40 = 12 porcentaje total parte En mi clase, el 40% son chicas. Si en total somos 30, ¿cuántas son las chicas? (El problema se resuelve hallando el 40% de 30 por cualquiera de los métodos que conocemos) total : 30 chicas: 40% 40% de 30 = 12Solución: 12 chicas A- CÁLCULO DE LA PARTE
8
8.- Problemas de porcentajes 2 En mi clase, de 30 que somos en total, 12 son chicas. ¿Qué porcentaje representan las chicas? (Lo resolveremos por regla de tres. Y recuerda que el porcentaje es lo que corresponde a 100) Total Chicas 30 --- 12 100 --- x Solución: 40% Otra forma de resolverlo Alumnos % 30 ------- 100 12 ------- x Solución: 40% B- CÁLCULO DEL PORCENTAJE
9
9.- Problemas de porcentajes 3 En mi clase hay 12 chicas y representan el 40% del total. ¿Cuántos somos en total? (Lo resolveremos por regla de tres. Y recuerda que el porcentaje es lo que corresponde a 100) Total Chicas 100 --- 40 x --- 12 Solución: 30 alumnos/as Otra forma de resolverlo % Alumnos/as 40 ---------- 12 100 --------- x Solución: 30 alumnos/as C- CÁLCULO DEL TOTAL
10
10.- Problemas de porcentajes 4 Son problemas en los que algo tiene un valor inicial, aumenta en un porcentaje de su valor y llega a un valor final. Mi tío gana 1200 € mensuales de sueldo y le van a subir el 12%. ¿Cuánto ganará después de la subida? 1200 + 144 = 1344 Solución: 1344 € Otra forma de resolverlo Solución: 1344 € D- AUMENTO PORCENTUAL (Si aumenta el 12%, cada 100 de antes se convienten en 112) Sueldo: 1200 € Aumento: 12% 12% de 1200 = 144 Sueldo: 1200 € Aumento: 12% 112% de 1200 = 1344
11
11.- Problemas de porcentajes 5 Son problemas en los que algo tiene un valor inicial, disminuye en un porcentaje de su valor y llega a un valor final. La camiseta que me gusta vale hoy 30 €. Si en rebajas tiene un descuento del 25%. ¿Cuánto me costará entonces? 30 – 7,5 = 22,5 Solución: 22.5 € Otra forma de resolverlo Solución: 22,5 € E- DISMINUCIÓN PORCENTUAL (Si me descuentan el 25%, pago el 75% del valor) Precio: 30€ Descuento: 25% 25% de 30 = 7.5 Precio: 30€ Decuento: 25% 75% de 30 = 22,5
12
12.- Otros problemas de aumento y disminución porcentual (1) Mi tío gana 1344 € mensuales de sueldo después de una subida del 12%. ¿Cuánto ganaba antes? Antes Después 100 --- 112 x --- 1344 1200 Solución: 1200 € Son problemas en los que se nos pide averiguar el valor inicial conociendo el valor final y el porcentaje de aumento o disminución. Los resolveremos de dos formas Por regla de tres Otra forma de resolverlo 112 % de x = 1344 100% + 12% = 112% 1200 Solución: 1200 € Sueldo antes: x Aumento: 12% Sueldo después: 1344€
13
He pagado 22,50 € por una camiseta. Si me han descontado el 25%, ¿cuál era el precio antes de la rebaja? Antes Después 100 --- 75 x --- 22,50 Solución: 30€ 13.- Otros problemas de aumento y disminución porcentual (2) Por regla de tres 30 Otra forma de resolverlo 75 % de x = 22, 50 100% - 25% = 75% Solución: 30€ 30 Precio antes: x Descuento: 25% Precio después: 22,50€
14
Ejemplos 1.Una empresa emplea 2,300 personas. De éstas, 86% están en ventas; 5% en oficinas y 6% es personal de servicios, el resto es personal administrativo. ¿Cuántas personas están empleadas en cada categoría? 2.Un trabajador que ganó $300.00 gastó $175.00 en un juego. ¿Qué por ciento de su dinero gastó? 3.Cuatro personas invirtieron un total de $254,000.00 en un negocio. La primera aportó el 15% del capital, la segunda 35%, la tercera 30% y la cuarta el resto. ¿Cuánto invirtió cada persona? 4.Una helada reciente destruyó 27% de la cosecha de café de Colombia. Si la cosecha tenía un valor aproximado de 32,450,000 dólares, ¿cuál fue la cantidad que se perdió?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.