Presentation is loading. Please wait.

Presentation is loading. Please wait.

DFT, 2007. Observation functional An exact generalization of DFT  States, observables, observations  Variational principles  Generalized density functional.

Similar presentations


Presentation on theme: "DFT, 2007. Observation functional An exact generalization of DFT  States, observables, observations  Variational principles  Generalized density functional."— Presentation transcript:

1 DFT, 2007

2 Observation functional An exact generalization of DFT  States, observables, observations  Variational principles  Generalized density functional  Exact generalized Kohn-Sham Eq.  Finite temperature extension  Skyrme from Relativistic MF Ph. Chomaz, C. Ducoin, K. Hasnaoui - GANIL-Caen E. Khan, J. Margueron - IPN-Orsay C. Providencia, D.P.Menezes, L. Brito, and Ph. Chomaz, PRC2007

3 DFT, 2007

4 A) States, Observables and Observations

5 DFT, 2007 States Observables Observation A) States, Observables and Observations Many-body wave function Hilbert or Fock space

6 DFT, 2007 States Observables Observation A) States, Observables and Observations Many-body wave function Hilbert or Fock space Density matrix Liouville space

7 DFT, 2007 States Observables Observation A) States, Observables and Observations Many-body wave function Hilbert or Fock space Density matrix Liouville space Scalar product in matrix space Generalized density

8 DFT, 2007

9 Static Dynamics B) Variational principles Schr ö dinger equation Extremum of the action I Balian and Vénéroni double principle Liouville equation Observables backward from t 1 Density forward from t 0

10 DFT, 2007 Static Dynamics B) Variational principles Zero Temperature minimum energy E Finite T minimum free energy Entropy Schr ö dinger equation Extremum of the action I Balian and Vénéroni double principle Liouville equation Observables backward from t 1 Density forward from t 0

11 DFT, 2007 Static Dynamics B) Variational principles Zero Temperature minimum energy E Finite T minimum free energy Entropy Schr ö dinger equation Extremum of the action I Balian and Vénéroni double principle Liouville equation Observables backward from t 1 Density forward from t 0

12 DFT, 2007

13 C) Exact generalized Density functional

14 DFT, 2007 Observations E functional C) Exact generalized Density functional Generalized density

15 DFT, 2007 Observations E functional  Min in a subspace with the density constraint C) Exact generalized Density functional Generalized density

16 DFT, 2007 Observations E functional  Min in a subspace with the density constraint Theorem:  Two steps minimization  Exact ground state C) Exact generalized Density functional Generalized density Or

17 DFT, 2007 Observations E functional  Min in a subspace with the density constraint Theorem:  Two steps minimization  Exact ground state C) Exact generalized Density functional Generalized density Or Demonstration:

18 DFT, 2007 E functional  Min in a subspace with the density constraint C) Generalized DFT

19 DFT, 2007 E functional  Min in a subspace with the density constraint Lagrange multiplier:  Min with no constraint C) Generalized DFT

20 DFT, 2007 E functional  Min in a subspace with the density constraint Lagrange multiplier:  Min with no constraint  External field C) Generalized DFT and external field

21 DFT, 2007 E functional  Min in a subspace with the density constraint Lagrange multiplier:  Min with no constraint  External field  Legendre transform C) Generalized DFT and external field

22 DFT, 2007 E functional  Min in a subspace with the density constraint Lagrange multiplier:  Min with no constraint  External field  Legendre transform C) Generalized DFT and external field  Existence / analyticity No degeneracy / no phase trans.  Invertibility

23 DFT, 2007 E functional  Min in a subspace with the density constraint Lagrange multiplier:  Min with no constraint  External field  Legendre transform C) Generalized DFT and external field  Existence / analyticity No degeneracy / no phase trans.  Invertibility Cf. Höhenberg-Kohn theorem

24 DFT, 2007 E functional  Min in a subspace with the density constraint Lagrange multiplier:  Min with no constraint  External field  Legendre transform C) Generalized DFT and external field  Existence / analyticity No degeneracy / no phase trans.  Invertibility

25 DFT, 2007

26 Exact E functional  For a set of observations D) Exact Generalized Kohn-Sham Eq. Generalized density

27 DFT, 2007 Exact E functional  For a set of observations Exact ground state E  => exact densities  D) Exact Generalized Kohn-Sham Eq. Generalized density

28 DFT, 2007 Exact E functional  For a set of observations Exact ground state E  => exact densities  Variation  Equivalent to MF Equation with Lie algebra including A D) Exact Generalized Kohn-Sham Eq. Generalized density

29 DFT, 2007 Remarks  Exact for E and all observations =  l  included in E[  ]  Easy to go from a set of A l to a reduced set A’ l => E’[  ‘]=min  ‘=cst E[  ] D) Exact Generalized Kohn-Sham Eq.

30 DFT, 2007 Lie algebra Observation Trial states Hamiltonian Independent particles Mean Field E) Hartree Fock Kohn-Sham One-body density One-body observables Thouless theorem (Slaters) Independent particle state

31 DFT, 2007

32 One body, one body density E) Hartree Fock Kohn-Sham

33 DFT, 2007 One body, one body density => Mean field E) Hartree Fock Kohn-Sham

34 DFT, 2007 One body, one body density => Mean field Local density approximation  Energy density functional  Local densities matter, kinetic, current  Mean field E) Hartree Fock Kohn-Sham : LDA

35 DFT, 2007 One body, one body density => Mean field Local density approximation  Energy density functional  Local densities matter, kinetic, current  Mean field E) Hartree Fock Kohn-Sham : LDA

36 DFT, 2007 E) LDA: Skyrme case 36 Standard case few densities  Matter isoscalar isovector  kinetic isoscalar isovector  Spin isoscalar isovector Energy functional Mean-field q=(n,p)

37 DFT, 2007 Standard case few densities  Matter isoscalar isovector  kinetic isoscalar isovector  Spin isoscalar isovector Energy functional Mean-field q=(n,p) E) LDA: Skyrme case 36 Skyrme parameters

38 DFT, 2007

39 Maximum entropy Under energy constraint  Free energy Equilibrium  Partition sum Equation of states  Legendre transform  Free energy 1st order Phase transition F) Finite temperature

40 DFT, 2007 Minimum entropy Observables Generalized densities Free energy functional Lagrange “external field” Minimum under constraints  Extrenal field  Max entropy states  Partition sum  EOS  Legendre transform F) Free energy functional

41 DFT, 2007 Minimum entropy Observables Generalized densities Free energy functional Lagrange “external field” Minimum under constraints  Extrenal field  Max entropy states  Partition sum  EOS  Legendre transform F) Free energy functional

42 DFT, 2007 Thermo with external field Partition sum  dependent free energy Free energy functional Link with density  Legendre Existence /analyticity Curvature = fluctuation => Unicity F) Free energy functional No phase trans. Convex free energy

43 DFT, 2007 Thermo with external field Partition sum  dependent free energy Free energy functional Link with density  Legendre Existence /analyticity Curvature = fluctuation => Unicity F) Free energy functional No phase trans. Convex free energy

44 DFT, 2007 Max Free energy functional Assume a Lie algebra  Trial density  Density  Entropy, S variation Mean field  Energy, E variation  Free energy variation Generalized Kohn-Sham F) Finite T Generalized Kohn-Sham Eq.

45 DFT, 2007 Max Free energy functional Assume a Lie algebra  Trial density  Density  Entropy, S variation Mean field  Energy, E variation  Free energy variation Generalized Kohn-Sham F) Finite T Generalized Kohn-Sham Eq.

46 DFT, 2007

47 Free energy observation-functional Thermo with external field  Partition sum   dependent free energy Free energy funct. = Legendre tr. Unique density Problem with phase transition General theorems and methods Clarification of comparisons between functionals Systematic method to reduce information (eg subset of A or  ) Inclusion of correlations (extension of A, eg fluctuations) G) Conclusion

48 DFT, 2007

49 Skyrme functional  Isospin part  Kinetic  as  -functional (Matter properties LDA) H) DFT: Skyrme versus Relat. MF C. Providencia, D.P.Menezes, L. Brito, and Ph. Chomaz, PRC2007

50 DFT, 2007 Skyrme functional  Isospin part  Kinetic  as  -functional (Matter properties LDA) H) DFT: Skyrme versus Relat. MF C. Providencia, D.P.Menezes, L. Brito, and Ph. Chomaz, PRC2007 Relat. M.F. (Walecka)  Nucleon fields  Meson fields  pot.  mass

51 DFT, 2007 Equilibrium Meson field Densities H) Equilibrium Relativistic MF C. Providencia, D.P.Menezes, L. Brito, and Ph. Chomaz, PRC2007  pot.  mass  Barions  Sacalar  Kinetic

52 DFT, 2007 Energy functional Densities H) Equilibrium Relativistic MF C. Providencia, D.P.Menezes, L. Brito, and Ph. Chomaz, PRC2007  Barions  Sacalar  Kinetic

53 DFT, 2007 H) Non-Relat. Approxim => Skyrme C. Providencia, D.P.Menezes, L. Brito, and Ph. Chomaz, PRC2007  Scalar  Kinetic Non relat. approx. Densities

54 DFT, 2007 H) Non-Relat. Approxim => Skyrme C. Providencia, D.P.Menezes, L. Brito, and Ph. Chomaz, PRC2007  Scalar  Kinetic  Relativistic  Skyrme Non relat. approx. Densities Energy functional

55 DFT, 2007 H) Non-Relat. Approxim => Skyrme C. Providencia, D.P.Menezes, L. Brito, and Ph. Chomaz, PRC2007  Scalar  Kinetic  Relativistic  Skyrme Non relat. approx. Densities Energy functional

56 DFT, 2007 Comparison of functionals H) Non-Relat. Approxim => Skyrme C. Providencia, D.P.Menezes, L. Brito, and Ph. Chomaz, PRC2007

57 DFT, 2007 Comparison of functionals H) Non-Relat. Approxim => Skyrme C. Providencia, D.P.Menezes, L. Brito, and Ph. Chomaz, PRC2007 fit

58 DFT, 2007

59

60

61


Download ppt "DFT, 2007. Observation functional An exact generalization of DFT  States, observables, observations  Variational principles  Generalized density functional."

Similar presentations


Ads by Google