Download presentation
Presentation is loading. Please wait.
Published byVernon Garrison Modified over 8 years ago
1
DFT, 2007
2
Observation functional An exact generalization of DFT States, observables, observations Variational principles Generalized density functional Exact generalized Kohn-Sham Eq. Finite temperature extension Skyrme from Relativistic MF Ph. Chomaz, C. Ducoin, K. Hasnaoui - GANIL-Caen E. Khan, J. Margueron - IPN-Orsay C. Providencia, D.P.Menezes, L. Brito, and Ph. Chomaz, PRC2007
3
DFT, 2007
4
A) States, Observables and Observations
5
DFT, 2007 States Observables Observation A) States, Observables and Observations Many-body wave function Hilbert or Fock space
6
DFT, 2007 States Observables Observation A) States, Observables and Observations Many-body wave function Hilbert or Fock space Density matrix Liouville space
7
DFT, 2007 States Observables Observation A) States, Observables and Observations Many-body wave function Hilbert or Fock space Density matrix Liouville space Scalar product in matrix space Generalized density
8
DFT, 2007
9
Static Dynamics B) Variational principles Schr ö dinger equation Extremum of the action I Balian and Vénéroni double principle Liouville equation Observables backward from t 1 Density forward from t 0
10
DFT, 2007 Static Dynamics B) Variational principles Zero Temperature minimum energy E Finite T minimum free energy Entropy Schr ö dinger equation Extremum of the action I Balian and Vénéroni double principle Liouville equation Observables backward from t 1 Density forward from t 0
11
DFT, 2007 Static Dynamics B) Variational principles Zero Temperature minimum energy E Finite T minimum free energy Entropy Schr ö dinger equation Extremum of the action I Balian and Vénéroni double principle Liouville equation Observables backward from t 1 Density forward from t 0
12
DFT, 2007
13
C) Exact generalized Density functional
14
DFT, 2007 Observations E functional C) Exact generalized Density functional Generalized density
15
DFT, 2007 Observations E functional Min in a subspace with the density constraint C) Exact generalized Density functional Generalized density
16
DFT, 2007 Observations E functional Min in a subspace with the density constraint Theorem: Two steps minimization Exact ground state C) Exact generalized Density functional Generalized density Or
17
DFT, 2007 Observations E functional Min in a subspace with the density constraint Theorem: Two steps minimization Exact ground state C) Exact generalized Density functional Generalized density Or Demonstration:
18
DFT, 2007 E functional Min in a subspace with the density constraint C) Generalized DFT
19
DFT, 2007 E functional Min in a subspace with the density constraint Lagrange multiplier: Min with no constraint C) Generalized DFT
20
DFT, 2007 E functional Min in a subspace with the density constraint Lagrange multiplier: Min with no constraint External field C) Generalized DFT and external field
21
DFT, 2007 E functional Min in a subspace with the density constraint Lagrange multiplier: Min with no constraint External field Legendre transform C) Generalized DFT and external field
22
DFT, 2007 E functional Min in a subspace with the density constraint Lagrange multiplier: Min with no constraint External field Legendre transform C) Generalized DFT and external field Existence / analyticity No degeneracy / no phase trans. Invertibility
23
DFT, 2007 E functional Min in a subspace with the density constraint Lagrange multiplier: Min with no constraint External field Legendre transform C) Generalized DFT and external field Existence / analyticity No degeneracy / no phase trans. Invertibility Cf. Höhenberg-Kohn theorem
24
DFT, 2007 E functional Min in a subspace with the density constraint Lagrange multiplier: Min with no constraint External field Legendre transform C) Generalized DFT and external field Existence / analyticity No degeneracy / no phase trans. Invertibility
25
DFT, 2007
26
Exact E functional For a set of observations D) Exact Generalized Kohn-Sham Eq. Generalized density
27
DFT, 2007 Exact E functional For a set of observations Exact ground state E => exact densities D) Exact Generalized Kohn-Sham Eq. Generalized density
28
DFT, 2007 Exact E functional For a set of observations Exact ground state E => exact densities Variation Equivalent to MF Equation with Lie algebra including A D) Exact Generalized Kohn-Sham Eq. Generalized density
29
DFT, 2007 Remarks Exact for E and all observations = l included in E[ ] Easy to go from a set of A l to a reduced set A’ l => E’[ ‘]=min ‘=cst E[ ] D) Exact Generalized Kohn-Sham Eq.
30
DFT, 2007 Lie algebra Observation Trial states Hamiltonian Independent particles Mean Field E) Hartree Fock Kohn-Sham One-body density One-body observables Thouless theorem (Slaters) Independent particle state
31
DFT, 2007
32
One body, one body density E) Hartree Fock Kohn-Sham
33
DFT, 2007 One body, one body density => Mean field E) Hartree Fock Kohn-Sham
34
DFT, 2007 One body, one body density => Mean field Local density approximation Energy density functional Local densities matter, kinetic, current Mean field E) Hartree Fock Kohn-Sham : LDA
35
DFT, 2007 One body, one body density => Mean field Local density approximation Energy density functional Local densities matter, kinetic, current Mean field E) Hartree Fock Kohn-Sham : LDA
36
DFT, 2007 E) LDA: Skyrme case 36 Standard case few densities Matter isoscalar isovector kinetic isoscalar isovector Spin isoscalar isovector Energy functional Mean-field q=(n,p)
37
DFT, 2007 Standard case few densities Matter isoscalar isovector kinetic isoscalar isovector Spin isoscalar isovector Energy functional Mean-field q=(n,p) E) LDA: Skyrme case 36 Skyrme parameters
38
DFT, 2007
39
Maximum entropy Under energy constraint Free energy Equilibrium Partition sum Equation of states Legendre transform Free energy 1st order Phase transition F) Finite temperature
40
DFT, 2007 Minimum entropy Observables Generalized densities Free energy functional Lagrange “external field” Minimum under constraints Extrenal field Max entropy states Partition sum EOS Legendre transform F) Free energy functional
41
DFT, 2007 Minimum entropy Observables Generalized densities Free energy functional Lagrange “external field” Minimum under constraints Extrenal field Max entropy states Partition sum EOS Legendre transform F) Free energy functional
42
DFT, 2007 Thermo with external field Partition sum dependent free energy Free energy functional Link with density Legendre Existence /analyticity Curvature = fluctuation => Unicity F) Free energy functional No phase trans. Convex free energy
43
DFT, 2007 Thermo with external field Partition sum dependent free energy Free energy functional Link with density Legendre Existence /analyticity Curvature = fluctuation => Unicity F) Free energy functional No phase trans. Convex free energy
44
DFT, 2007 Max Free energy functional Assume a Lie algebra Trial density Density Entropy, S variation Mean field Energy, E variation Free energy variation Generalized Kohn-Sham F) Finite T Generalized Kohn-Sham Eq.
45
DFT, 2007 Max Free energy functional Assume a Lie algebra Trial density Density Entropy, S variation Mean field Energy, E variation Free energy variation Generalized Kohn-Sham F) Finite T Generalized Kohn-Sham Eq.
46
DFT, 2007
47
Free energy observation-functional Thermo with external field Partition sum dependent free energy Free energy funct. = Legendre tr. Unique density Problem with phase transition General theorems and methods Clarification of comparisons between functionals Systematic method to reduce information (eg subset of A or ) Inclusion of correlations (extension of A, eg fluctuations) G) Conclusion
48
DFT, 2007
49
Skyrme functional Isospin part Kinetic as -functional (Matter properties LDA) H) DFT: Skyrme versus Relat. MF C. Providencia, D.P.Menezes, L. Brito, and Ph. Chomaz, PRC2007
50
DFT, 2007 Skyrme functional Isospin part Kinetic as -functional (Matter properties LDA) H) DFT: Skyrme versus Relat. MF C. Providencia, D.P.Menezes, L. Brito, and Ph. Chomaz, PRC2007 Relat. M.F. (Walecka) Nucleon fields Meson fields pot. mass
51
DFT, 2007 Equilibrium Meson field Densities H) Equilibrium Relativistic MF C. Providencia, D.P.Menezes, L. Brito, and Ph. Chomaz, PRC2007 pot. mass Barions Sacalar Kinetic
52
DFT, 2007 Energy functional Densities H) Equilibrium Relativistic MF C. Providencia, D.P.Menezes, L. Brito, and Ph. Chomaz, PRC2007 Barions Sacalar Kinetic
53
DFT, 2007 H) Non-Relat. Approxim => Skyrme C. Providencia, D.P.Menezes, L. Brito, and Ph. Chomaz, PRC2007 Scalar Kinetic Non relat. approx. Densities
54
DFT, 2007 H) Non-Relat. Approxim => Skyrme C. Providencia, D.P.Menezes, L. Brito, and Ph. Chomaz, PRC2007 Scalar Kinetic Relativistic Skyrme Non relat. approx. Densities Energy functional
55
DFT, 2007 H) Non-Relat. Approxim => Skyrme C. Providencia, D.P.Menezes, L. Brito, and Ph. Chomaz, PRC2007 Scalar Kinetic Relativistic Skyrme Non relat. approx. Densities Energy functional
56
DFT, 2007 Comparison of functionals H) Non-Relat. Approxim => Skyrme C. Providencia, D.P.Menezes, L. Brito, and Ph. Chomaz, PRC2007
57
DFT, 2007 Comparison of functionals H) Non-Relat. Approxim => Skyrme C. Providencia, D.P.Menezes, L. Brito, and Ph. Chomaz, PRC2007 fit
58
DFT, 2007
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.