Download presentation
Presentation is loading. Please wait.
Published byAmanda Nicholson Modified over 8 years ago
1
1 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Waveguide grating mirrors Insights from the inside Future Past Present Daniel Friedrich, Michael Britzger, Karsten Danzmann and Roman Schnabel Frank Brückner, Stefanie Kroker, Ernst-Bernhard Kley and Andreas Tünnermann Max Planck Institute for Gravitational Physics (AEI Hannover), Leibniz Universität Hannover Institute of Applied Physics, Friedrich-Schiller-Universität Jena
2
2 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Coating thermal noise http://wwwcascina.virgo.infn.it/advirgoLIGO-M060056-v1 AdvLIGOAdvVirgo Future Past Present
3
3 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Coating thermal noise GEO-HF Future Past Present GEO-HF logbook, page 60
4
4 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Coating thermal noise http://gw.icrr.u-tokyo.ac.jp/lcgt/ Future Past Present LCGT: Proposed
5
5 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Coating thermal noise Einstein Telescope: Goal sensitivity Future Past Present http://www.et-gw.eu
6
6 Daniel Friedrich GWADW Kyoto – May 17th, 2010 The 22nd century Future Past Present
7
7 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Addressing coating Brownian noise Material research e.q. mechanical loss φ Reduction of coating thickness d Cryogenic temperature T Larger beam size r 0 Future Past Present G. Harry et al., CQG, 19, 897 (2002)
8
8 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Corner reflectors V. B. Braginski and S. P. Vyatchanin Phys. Lett. A 324, 345 (2004) The ANU coating-free mirror S. Goßler et al. Phys. Rev A 76, 053810 (2007) Cavity as mirror F. Ya. Khalili Phys. Lett. A 334, 67 (2005) Coating-free corner reflector G. Cella and A. Giazotto Phys. Rev. D, 74 042001 (2006) Novel ideas Future Past Present Stefan Goßler Tuesday 7pm
9
9 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Waveguide grating mirrors Rigorous Coupled Wave Analysis (RCWA) www.unigit.com Future Past Present Broadband waveguide grating mirrors @ 1064nm A. Bunkowski et al. Class. Quantum Grav. 23, 7297 (2006)
10
10 Daniel Friedrich GWADW Kyoto – May 17th, 2010 On the road to coating-free mirrors Future Past Present Single-layer Monolithic Quasi-Monolithic
11
11 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Silica Tantala Single-layer WGG @ 1064nm Future Past Present
12
12 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Grating size: 7.5mm*7.5mm Cavity Length = (0.495±0.001)m Beam radius 100 m Finesse 650 Highest reflectivity = (99.08±0.05)% Entire area: R>96% Single-layer WGG @ 1064nm Future Past Present
13
13 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Monolithic WGG @ 1550nm Crystalline Si Future Past Present
14
14 Daniel Friedrich GWADW Kyoto – May 17th, 2010 silica mask on a Si-substrate 1. anisotropic etching 2. resist removal 3. passivation of sidewalls 4. isotropic etching 5. BOSCH®- process 6. removal of passivated layer Monolithic WGG @ 1550nm Future Past Present
15
15 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Monolithic WGG @ 1550nm Future Past Present
16
16 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Monolithic WGG @ 1550nm Future Past Present Grating size: 7.5mm*13mm Cavity Length = (24±0.5)mm Beam radius 50 m Finesse 3000 Highest reflectivity = (99.8±0.01)% Area of 2mm*2mm: R= (99.77±0.01)%
17
17 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Quasi-Monolithic WGG @ 1550nm Future Past Present
18
18 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Bonding Coating Quasi-Monolithic WGG @ 1550nm Future Past Present 1st try Not done yet
19
19 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Quasi-Monolithic WGG @ 1550nm R=(93±0.5)% Future Past Present optimal design
20
20 Daniel Friedrich GWADW Kyoto – May 17th, 2010 (99.8 ± 0.01)% @1550nm Design/Experiment Opt. Express 17, 24334 (2009) PRL 104, 163903 (2010) Opt. Express 17, 163 (2009) (93 ± 0.5)% @1550nm (99.08 ± 0.05)% @1064nm CQG 23, 7297 (2006) Opt. Lett. 33, 3 (2008) Future Past Present
21
21 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Coating thermal noise Brownian = Thermoelastic + Thermorefractive TT Future Past Present thermal fluctuations thermal energy T G. Harry et al., CQG, 19, 897 (2002) M. Evans et al., Phys. Rev. D 78, 102003 (2008) Thermo-optic
22
22 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Coating thermal noise @ 1064nm Future Past Present ET-021-09
23
23 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Coating thermal noise (roughly) Brownian Thermoelastic Thermorefractive Future Past Present … 8 uppermost double layer dominate … coating thickness … coating thickness & mechanical loss M. Evans et al., Phys. Rev. D 78, 102003 (2008)
24
24 Daniel Friedrich GWADW Kyoto – May 17th, 2010 WG thermal noise (roughly) Future Past Present Brownian Thermoelastic Thermorefractive … strongly depends on the design … coating thickness … coating thickness & mechanical loss
25
25 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Brownian noise estimates of WGs T=18K Contribution from R. Nawrodt Dedicated Q-factor measurements are on the way Future Past Present SiO2/Ta2O5 6 m Ta2O5 0.4 m Si 1.5 m Si-substrate Theoretical: Experimental: Christian Schwarz Wednesday 5:20pm Brownian … coating thickness & mechanical loss
26
26 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Future Past Present High coupling efficiency (±1T 33%) Low coupling efficiency (±1T 1%) Thermorefractive noise of WGs Thermorefractive … strongly depends on the design
27
27 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Future Past Present Thermorefractive noise of WGs t=3nm → Φ 50deg t=30nm → Φ 50deg
28
28 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Optical thickness TT Future Past Present Tantala Silica Phase change with temperature
29
29 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Evanescent coupling Optical thickness TT Future Past Present Tantala Silica Phase change with temperature
30
30 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Evanescent coupling Optical thickness TT Lateral expansion (many effects) Future Past Present Tantala Silica Phase change with temperature
31
31 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Thermal noise estimates @ 1064nm Future Past Present Material properties for ML and WG assumed to be the same 0.8 m 6m6m
32
32 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Conclusions on single layer WG Future Past Present Q: Brownian noise… A: The reduced thickness is an advantage Q: Thermoelastic noise… A: Not yet investigated, but the reduced thickness should be an advantage Q: Thermorefractive noise… A: Presented model suggests that optimal designs/materials are required
33
33 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Thoughts about monolithic WG Future Past Present Q: Brownian noise… A: Monocrystaline structures are promising in terms of low mechanical loss Q: Thermoelastic noise… A: Modeling will be complex due to the sophisticated structure Q: Thermorefractive noise… A: Silicon allows for parameter tolerant designs. Hence, it will be much less sensitive to temperature fluctuations.
34
34 Daniel Friedrich GWADW Kyoto – May 17th, 2010 WGG @ Glasgow prototype Looking forward to october 2010 M. Edgar et al. Opt. Lett. 34, 3184 (2009) Future Past Present
35
35 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Modeling thermal noise (Model the structure, optimize designs, …) Work to be done Direct thermal noise measurement (Will put it to the test) Test mass size/optical quality (Scattering, further treatment, bonding, …) Future Past Present
36
36 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Thank you
37
37 Daniel Friedrich GWADW Kyoto – May 17th, 2010 ‚Uninvited guests‘ ? xx 1. All phase shifts cancel 2. Numerical results agree 3. Dynamical effects unlikely
38
38 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Thermal noise estimates R. Nawrodt et al. New Journal of Physics 9, 225 (2007) Grating structure does not „destroy“ high Q-factor of substrate, but…
39
39 Daniel Friedrich GWADW Kyoto – May 17th, 2010 silicon(n=3.5), λ=1550nm, d=700nm, TM-polarization Si Monolithic WGG @ 1550nm
40
40 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Monolithic WGG @ 1550nm 130MHz Contribution from R. Nawrodt
41
41 Daniel Friedrich GWADW Kyoto – May 17th, 2010 d=690nm, s=400nm Single-layer WGG @ 1064nm
42
42 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Quasi-Monolithic WGG @ 1550nm
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.