Download presentation
Presentation is loading. Please wait.
1
○松村千里、鈴木元治、鶴川正寛、 奥野俊博、中野 武 (兵庫県立健康環境科学研究センター)
POPs類における 光学異性体分析の検討 ○松村千里、鈴木元治、鶴川正寛、 奥野俊博、中野 武 (兵庫県立健康環境科学研究センター)
2
光学異性体 クロルデン異性体には光学異性体が存在。生体内で一方の異性のみが選択的に代謝されることにより光学異性対比ER((+)/(-))が変化することが知られている。これらの光学異性体の把握は、生体中での代謝情報やリスク評価に役立つことから、重要なファクターになると考えられる。
3
trans-chlordane chiral oxychlordane trans-nonachlor cis-nonachlor
Example of chlordane component C l C l O H trans-chlordane chiral oxychlordane Chlordane isomers and these metabolite are chiral. I show the example, trans-chlordane and oxychlordane. These isomers are existing enantiomers. Only, trans- and cis-nonachlors are achiral. When it is synthesized and diffused into the environment, these compounds are racemic. These enantiomers ratio is 1:1. C l C l trans-nonachlor cis-nonachlor achiral
4
heptachlor component-U82
trans-chlordane component-MC4 cis-chlordane component-MC5 trans-nonachlo cis-nonachlor component-MC7
5
heptachlor-exo- alpha-HCH
component-MC6 o,p’-DDT oxychlordane o,p’-DDD heptachlor-exo- alpha-HCH epoxide oxychlordene
6
Atropisomer of PCB 1 #45 (2,2’,3,6-TeCB)
#84(2,2’,3,3’,6-PeCB) #91(2,2’,3,4’,6-PeCB) #95(2,2’,3,5’,6-PeCB) #88(2,2’,3,4,6-PeCB)
7
Atropisomer of PCB 2 #132(2,2’,3,3’,4,6’-HxCB) #135(2,2’,3,3’,5,6’-HxCB) #136(2,2’,3,3’,6,6’-HxCB) #149(2,2’,3,4’,5’,6-HxCB) #131(2,2’,3,3’,4,6-HxCB) #139(2,2’,3,4,4’,6-HxCB) #144(2,2’,3,4,5’,6-HxCB)
8
Atropisomer of PCB 3 #171(2,2’,3,3’,4,4’,6-HpCB) #175(2,2’,3,3’,4,5’,6-HpCB) #183(2,2’,3,4,4’,5’,6-HpCB) #176(2,2’,3,3’,4,6,6’-HpCB) #174(2,2’,3,3’,4,5,6’-HpCB) #196(2,2’,3,3’,4,4’,5,6’-OcCB) #197(2,2’,3,3’,4,4’,6,6’-OcCB)
10
P309~P312
13
光学異性体 今回は、GC/MS分析用キャピラリーカラムとして液相にβ-シクロデキストリンを用いたカラム(BGB-172、20% tert-butyldimethylsilylated beta-cyclodextrin in methylphenylcyanopropylpolysiloxane )を使用することにより、クロルデン類およびAtropisomer(PCB)の光学異性体分析を行った。人血清、クロルデン製品や環境試料の光学異性体パターンを比較したのでその結果を報告する。
14
HRGC/HRMS and Column GC Hewlettpackard HP-5890II MS JEOL MS-700
Column: BGB-172 (BGB Analytik) 30mX0.25mmID,0.25μmFilmThickness (20%-tert-butyldimethylsilylated- beta-cyclodextrin in 15%-phenyl-85%-methyl-polysiloxane ) High resolution GC/MS apparatus was here. Enantiomers were separated on a BGB-172 column substituted beta-cyclodextrin.
15
Table1 GC/MS conditions
GC:HP6890Ⅱ Column:BGB-172 (BGB Analytik) 30mX0.25mmID, 0.25μmFilmThickness Carrier gas:Helium(1.0ml/min constant flow) Oven temp.:120℃(0min)-4℃/min-200℃(0min)-1℃/min-230℃(25min), Inj.temp.:230℃ MS:JEOL JMS-800D Ionization mode:EI, Ion source temp.:250℃, Interface temp.:245℃, Ionization current:500μA, Ionization energy:38eV
16
GC/MS channel list 1 (2 injections)
17
GC/MS channel list 2 (2 injections)
18
Technical chlordane import (tons)
Technical chlordane was imported about 240 tons during from 1958 to 1970, and used for agriculture, pest control on crops and vegetables. On 2003, about 49 tons of chlordane formulation have been stored. It is about 7tons in terms of chlordane. From 1979, Technical chlordane import was increased and used for termite control (house, lumber, timber) (In 1976; 6% chlordane formulation was deleterious substance, but 2% chlordane formulation was not restricted.) In 1986, chlordane was restricted the using and producing.
19
Basic component of technical chlordane in Japan
chlorine component ratio (%) Cl6 α- chlordene 0.7 γ- chlordene 3 β- chlordene 3.6 Cl7 heptachlor 4.8 Cl8 MC-4 0.3 trans- chlordane 18 MC-5 5.8 cis-chlordane 16 Cl9 MC-6 1.5 trans-nonachlor 14 cis-nonachlor 4.5 Basic component of technical chlordane in Japan Technical chlordane used in Japan include 40% of octachlorinated isomers, 20% of nona- isomers, 5% of hepta- isomers, and 7% of hexa- isomers.
20
chlordane racemic racemic Technical Chlordane Atmosphere trans- trans-
cis- cis- MC-5 MC-5 MC-4 MC-4 C l C l C l C l racemic trans- trans- cis- cis- MC-5 MC-5 MC-4 MC-4 Atmosphere These peaks are chlordane isomers. These are trane-, cis, MC5 and MC4. In technical chlordane, isomers were racemic mixture. In atmospheric sample, they were (almost) racemic mixture, and isomer distribution was same as tech. chlordane. racemic
21
racemic racemic River Water River Sediment trans- trans- cis- cis-
l trans- trans- cis- cis- MC-5 MC-5 MC-4 MC-4 C l River Water C l C l racemic trans- trans- cis- cis- MC-5 MC-5 MC-4 MC-4 River Sediment racemic In river water sample, (MC-5 was nonracemic, indicated significant depletion of the last eluting enantiomer). Isomers were racemic mixture. In river sediment sample, they were also racemic mixture.
22
racemic nonracemic Technical Chlordane Serum trans- trans- cis- cis-
MC-5 MC-5 MC-4 MC-4 C l C l racemic MC trans- cis- trans- MC cis- MC-4 MC-4 Serum The chlordane isomers in serum sample was distinctly nonracemic. (MC-5 and trans-isomers were indicated significant depletion of the last eluting enantiomer. Cis-isomer was indicated significant depletion of the first eluting enantiomer.) The isomer distribution was different from technical chlordane, and MC-5 was one of the predominant isomer. nonracemic
23
chlordane racemic nonracemic trans- cis- MC-5 Technical Chlordane Air
Water This in the bar graph of chlordane isomers. Environmental samples were racemic mixture, but serum sample was nonracemic. Sediment nonracemic Serum
24
heptachlor-epoxide and oxychlordane
nonracemic exo- exo- endo- endo- C l O H heptachlor-epoxide These peaks are oxychlordane and heptachlor-epoxide isomers. The heptachlor-endo-epoxide was no-detected in almost samples. These isomers are metabolites of chlordane and heptachlor, and not included in technical chlordane. In the serum sample, these were also nonracemic.
25
nonracemic heptachlor- Oxychlordane epoxide Air Water Serum
These metabolites were detected in environmental samples and also detected in serum. (Other reports, using same column, first eluting enantiomer is (+)enantiomer and last eluting enantiomer is (-). And these metabolites were a excess of (+) enantiomer. Because, we think that our data also indicate a excess of (+) enantiomer.) Serum Bivalve (corbicula)
26
beta- gamma- alpha- chl6-2 chlordene Technical Chlordane Atmosphere River Water River Sediment Serum Figure2 GC/MS-SIM chromatogram showing elution of chlordene on BGB-172 HRGC column. (average of m/z and )
27
Table1 The enantiomeric excess (EE is absolute of 100 X [Area-first – Area-last]/[Area-first + Area-last]) values of chlordane component in serum sample. (%) chl6-2*3 41 beta-chlordene 3.8 gamma-chlordene 21 heptachlor-exo-epoxide 50 MC-5 71 trans-chlordane 24 cis-chlordane 48 oxy-chlordane 1 Area-first : area of first eluted enantiomer 2 Area-last : area of last eluted enantiomer 3 unknown isomer on chlordane
28
DDD&DDT(Air) DDD&DDT(Water1) DDD&DDT(Water2)
Sometimes we were observed that last eluted enantiomer of 2,4'-DDD was enriched.
31
atropisomer PCB7 (Air) PCB7 (adipose tissue)
#187 (1)#183 (2)#183 (1)#174 (2)#174 (1)#171 (2)#171 #180 #170 PCB7 (adipose tissue) #187 (1)#183 (2)#183 #180 #170 In PCB, only 19 congeners are atropisomers. These peaks are isomers of heptachlorbiphenyl on BGB-172 column. (4Cl:1, 5Cl:4, 6Cl:7, 7Cl:5, 8Cl:2) On this column, we can separated 11 isomers. (4Cl:1, 5Cl:3, 6Cl:4, 7Cl:3) We can see easy two separated atropisomer, #183 and #174. Upper chromatogram, air sample, these itropisomers were racemic. Bottom chromatogram, serum sample, we can only #183 atropisomer,
32
PCB7 (Air) #187 (1)#183 (2)#183 #185 (1)#174 (2)#174 PCB7 (adipose tissue) #187 (1)#183 (2)#183 #185 (1)#174 (2)#174 This is a extended figure around #183. #183 was detected. It was nonracemic, first eluted enantiomer was depleted.
33
EFs of alpha-HCH in sea waters
E(+)+ E(-) EF = POPs in the oceans EF (-) 0.5 The Japan Sea EF (-) 0.5 The South China Sea EF (-) 0.5 The North Atlantic Ocean EF (-) 0.5 The Pacific Ocean
34
The correlation between EFs and alpha-HCH/ΣHCHs ratios
POPs in the oceans The North Atlantic Ocean The South China Sea The Japan Sea The Pacific Ocean
35
The EFs of some POPs in the sea waters
POPs in the oceans The North Atlantic Ocean The South China Sea The Pacific Ocean The Japan Sea
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.