Download presentation
Presentation is loading. Please wait.
Published byMarion Brooks Modified over 8 years ago
1
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 10 Comparing Two Populations or Groups 10.2 Comparing Two Means
2
Learning Objectives After this section, you should be able to: The Practice of Statistics, 5 th Edition2 DESCRIBE the shape, center, and spread of the sampling distribution of the difference of two sample means. DETERMINE whether the conditions are met for doing inference about µ 1 − µ 2. CONSTRUCT and INTERPRET a confidence interval to compare two means. PERFORM a significance test to compare two means. DETERMINE when it is appropriate to use two-sample t procedures versus paired t procedures. Comparing Two Means
3
The Practice of Statistics, 5 th Edition3 Introduction What if we want to compare the mean of some quantitative variable for the individuals in Population 1 and Population 2? Our parameters of interest are the population means µ 1 and µ 2. The best approach is to take separate random samples from each population and to compare the sample means. Suppose we want to compare the average effectiveness of two treatments in a completely randomized experiment. We use the mean response in the two groups to make the comparison.
4
The Practice of Statistics, 5 th Edition4 Check your pulse! Count your pulse for 15 seconds. Multiply by 4 to get your pulse rate for a minute. Write that on your 3x5 card and turn in. Does it matter to your pulse whether you have an A card or a B card? Let’s find out!
5
The Practice of Statistics, 5 th Edition5 The Sampling Distribution of a Difference Between Two Means To explore the sampling distribution of the difference between two means, let’s start with two Normally distributed populations having known means and standard deviations. Based on information from the U.S. National Health and Nutrition Examination Survey (NHANES), the heights (in inches) of ten-year-old girls follow a Normal distribution N(56.4, 2.7). The heights (in inches) of ten-year-old boys follow a Normal distribution N(55.7, 3.8). Suppose we take independent SRSs of 12 girls and 8 boys of this age and measure their heights.
6
The Practice of Statistics, 5 th Edition6 The Sampling Distribution of a Difference Between Two Means Using Fathom software, we generated an SRS of 12 girls and a separate SRS of 8 boys and calculated the sample mean heights. The difference in sample means was then be calculated and plotted. We repeated this process 1000 times. The results are below:
7
The Practice of Statistics, 5 th Edition7 The Sampling Distribution of the Difference Between Sample Means Choose an SRS of size n 1 from Population 1 with mean µ 1 and standard deviation σ 1 and an independent SRS of size n 2 from Population 2 with mean µ 2 and standard deviation σ 2. The Sampling Distribution of a Difference Between Two Means
8
The Practice of Statistics, 5 th Edition8 The Sampling Distribution of a Difference Between Two Means
9
The Practice of Statistics, 5 th Edition9 Answer 10.2 Concept 1, p. 193
10
The Practice of Statistics, 5 th Edition10 The Two-Sample t Statistic If the Normal condition is met, we standardize the observed difference to obtain a t statistic that tells us how far the observed difference is from its mean in standard deviation units.
11
The Practice of Statistics, 5 th Edition11 The Two-Sample t Statistic The two-sample t statistic has approximately a t distribution. We can use technology to determine degrees of freedom OR we can use a conservative approach, using the smaller of n 1 – 1 and n 2 – 1 for the degrees of freedom.
12
The Practice of Statistics, 5 th Edition12 The Two-Sample t Statistic Conditions for Performing Inference About µ 1 - µ 2 Random: The data come from two independent random samples or from two groups in a randomized experiment. o 10%: When sampling without replacement, check that n 1 ≤ (1/10)N 1 and n 2 ≤ (1/10)N 2. Normal/Large Sample: Both population distributions (or the true distributions of responses to the two treatments) are Normal or both sample sizes are large (n 1 ≥ 30 and n 2 ≥ 30). If either population (treatment) distribution has unknown shape and the corresponding sample size is less than 30, use a graph of the sample data to assess the Normality of the population (treatment) distribution. Do not use two-sample t procedures if the graph shows strong skewness or outliers.
13
The Practice of Statistics, 5 th Edition13 Confidence Intervals for µ 1 – µ 2 Two-Sample t Interval for a Difference Between Two Means
14
The Practice of Statistics, 5 th Edition14 A Confidence Interval for Trees, p. 641 Answer 10.2 Concept 2, p. 194. Need help with the calculator part? Check out Tech Corner 23
15
The Practice of Statistics, 5 th Edition15 Significance Tests for µ 1 – µ 2 An observed difference between two sample means can reflect an actual difference in the parameters, or it may just be due to chance variation in random sampling or random assignment. Significance tests help us decide which explanation makes more sense. The null hypothesis has the general form H 0 : µ 1 - µ 2 = hypothesized value We’re often interested in situations in which the hypothesized difference is 0. Then the null hypothesis says that there is no difference between the two parameters: H 0 : µ 1 - µ 2 = 0 or, alternatively, H 0 : µ 1 = µ 2 The alternative hypothesis says what kind of difference we expect. H a : µ 1 - µ 2 > 0, H a : µ 1 - µ 2 < 0, or H a : µ 1 - µ 2 ≠ 0
16
The Practice of Statistics, 5 th Edition16 Significance Tests for µ 1 – µ 2 To find the P-value, use the t distribution with degrees of freedom given by technology or by (df = smaller of n 1 - 1 and n 2 - 1).
17
The Practice of Statistics, 5 th Edition17 Significance Tests for µ 1 – µ 2 Two-Sample t Test for the Difference Between Two Means
18
The Practice of Statistics, 5 th Edition18 Calcium and Blood Pressure, p. 645 Tech Corner 24 – Using a calculator to perform a 2 Sample t test Now try it. 10.2 Concept 3, p. 196
19
The Practice of Statistics, 5 th Edition19 Using Two-Sample t Procedures Wisely In planning a two-sample study, choose equal sample sizes if you can. Do not use “pooled” two-sample t procedures! We are safe using two-sample t procedures for comparing two means in a randomized experiment. Do not use two-sample t procedures on paired data! Beware of making inferences in the absence of randomization. The results may not be generalized to the larger population of interest.
20
Section Summary In this section, we learned how to… The Practice of Statistics, 5 th Edition20 DESCRIBE the shape, center, and spread of the sampling distribution of the difference of two sample means. DETERMINE whether the conditions are met for doing inference about µ 1 − µ 2. CONSTRUCT and INTERPRET a confidence interval to compare two means. PERFORM a significance test to compare two means. DETERMINE when it is appropriate to use two-sample t procedures versus paired t procedures. Comparing Two Means
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.